Full Text:   <5291>

Summary:  <2084>

CLC number: S888.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-06-11

Cited: 2

Clicked: 6329

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.7 P.611-623

http://doi.org/10.1631/jzus.B1300320


Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.)*


Author(s):  Chang-ying Liu, Rui-hua L, Jun Li, Ai-chun Zhao, Xi-ling Wang, Umuhoza Diane, Xiao-hong Wang, Chuan-hong Wang, Ya-sheng Yu, Shu-mei Han, Cheng Lu, Mao-de Yu

Affiliation(s):  . State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China

Corresponding email(s):   yumd@163.com

Key Words:  Mulberry fruit, MaACS , MaACO , Gene expression, Abscisic acid, Ethephon


Chang-ying Liu, Rui-hua Lü, Jun Li, Ai-chun Zhao, Xi-ling Wang, Umuhoza Diane, Xiao-hong Wang, Chuan-hong Wang, Ya-sheng Yu, Shu-mei Han, Cheng Lu, Mao-de Yu. Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.)[J]. Journal of Zhejiang University Science B, 2014, 15(7): 611-623.

@article{title="Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.)",
author="Chang-ying Liu, Rui-hua Lü, Jun Li, Ai-chun Zhao, Xi-ling Wang, Umuhoza Diane, Xiao-hong Wang, Chuan-hong Wang, Ya-sheng Yu, Shu-mei Han, Cheng Lu, Mao-de Yu",
journal="Journal of Zhejiang University Science B",
volume="15",
number="7",
pages="611-623",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300320"
}

%0 Journal Article
%T Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.)
%A Chang-ying Liu
%A Rui-hua Lü
%A Jun Li
%A Ai-chun Zhao
%A Xi-ling Wang
%A Umuhoza Diane
%A Xiao-hong Wang
%A Chuan-hong Wang
%A Ya-sheng Yu
%A Shu-mei Han
%A Cheng Lu
%A Mao-de Yu
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 7
%P 611-623
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300320

TY - JOUR
T1 - Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.)
A1 - Chang-ying Liu
A1 - Rui-hua Lü
A1 - Jun Li
A1 - Ai-chun Zhao
A1 - Xi-ling Wang
A1 - Umuhoza Diane
A1 - Xiao-hong Wang
A1 - Chuan-hong Wang
A1 - Ya-sheng Yu
A1 - Shu-mei Han
A1 - Cheng Lu
A1 - Mao-de Yu
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 7
SP - 611
EP - 623
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300320


Abstract: 
1-Aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) are encoded by multigene families and are involved in fruit ripening by catalyzing the production of ethylene throughout the development of fruit. However, there are no reports on ACS or ACO genes in mulberry, partly because of the limited molecular research background. In this study, we have obtained five ACS gene sequences and two ACO gene sequences from Morus Genome Database. Sequence alignment and phylogenetic analysis of MaACO1 and MaACO2 showed that their amino acids are conserved compared with ACO proteins from other species. MaACS1 and MaACS2 are type I, MaACS3 and MaACS4 are type II, and MaACS5 is type III, with different C-terminal sequences. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) expression analysis showed that the transcripts of MaACS genes were strongly expressed in fruit, and more weakly in other tissues. The expression of MaACO1 and MaACO2 showed different patterns in various mulberry tissues. MaACS and MaACO genes demonstrated two patterns throughout the development of mulberry fruit, and both of them were strongly up-regulated by abscisic acid (ABA) and ethephon.

桑树MaACS和MaACO基因的鉴定和表达模式研究

研究目的:分离和鉴定桑树中参与乙烯生物合成的酶的编码基因MaACSMaACO,研究其表达模式。
创新要点:基于最新公布的桑树基因组数据库数据,获得5个MaACS基因和2个MaACO基因,对其进行了生物信息分析,同时鉴定了其在不同桑树组织中、不同发育时期桑椹中和不同激素作用下的表达模式。
研究方法:通过生物信息学方法筛选和鉴定基因,利用荧光定量逆转录聚合酶链式反应(qRT-PCR)分析基因的表达量。
重要结论:MaACSMaACO基因在根、茎、叶等不同组织中呈现出不同的表达模式,在桑椹发育过程中呈现出两种表达模式,其表达量被脱落酸和乙烯利上调。

关键词:桑椹;MaACS;MaACO;脱落酸;乙烯利

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Alonso, J.M., Stepanova, A.N., 2004. The ethylene signaling pathway. Science, 306(5701):1513-1515. 


[2] Arteca, J.M., Arteca, R.N., 1999. A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol, 39(2):209-219. 


[3] Ayub, R., Guis, M., Ben Amor, M., 1996. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Bitechnol, 14(7):862-866. 


[4] Bidonde, S., Ferrer, M.A., Zegzouti, H., 1998. Expression and characterization of three tomato 1-aminocyclopropane-1-carboxylate oxidase cDNAs in yeast. Eur J Biochem, 253(1):20-26. 


[5] Blankenship, S.M., Dole, J.M., 2003. 1-Methylcyclopropene: a review. Posth Biol Technol, 28(1):1-25. 


[6] Blume, B., Grierson, D., 1997. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J, 12(4):731-746. 


[7] Cara, B., Giovannoni, J.J., 2008. Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci, 175(1-2):106-113. 


[8] Chae, H.S., Faure, F., Kieber, J.J., 2003. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell, 15(2):545-559. 


[9] Chen, Y.T., Lee, Y.R., Yang, C.Y., 2003. A novel papaya ACC oxidase gene (CP-ACO2) associated with late stage fruit ripening and leaf senescence. Plant Sci, 164(4):531-540. 


[10] Choudhury, S.R., Roy, S., Sengupta, D.N., 2008. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit. J Plant Physiol, 165(18):1865-1878. 


[11] Deikman, J., Kline, R., Fischer, R.L., 1992. Organization of ripening and ethylene regulatory Regions in a fruit-specific promoter from tomato (Lycopersicon esculentum). Plant Physiol, 100(4):2013-2017. 


[12] Gillaspy, G., Ben-David, H., Gruissem, W., 1993. Fruits: a developmental perspective. Plant Cell, 5(10):1439-1451. 


[13] He, N., Zhang, C., Qi, X., 2013. Draft genome sequence of the mulberry tree Morus notabilisNat Commun, 2:2455


[14] John, P., 1991. How plant molecular biologists revealed a surprising relationship between two enzymes, which took an enzyme out of a membrane, where it was not located and put it into the soluble phase where it could be studied. Plant Mol Biol Rep, 9(3):192-194. 


[15] Kende, H., 1993. Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 44(1):283-307. 


[16] Lelivre, J.M., Latch, A., Jones, B., 1997. Ethylene and fruit ripening. Physiol Plant, 101(4):727-739. 


[17] Lin, Z., Zhong, S., Grierson, D., 2009. Recent advances in ethylene research. J Exp Bot, 60(12):3311-3336. 


[18] Liu, Y., Zhang, S., 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in ArabidopsisPlant Cell, 16(12):3386-3399. 


[19] Luo, Z., 2003. Effect of modified atmosphere storage on the cell wall component and cell wall hydrolase activity of mulberry fruit. J Fruit Sci, (in Chinese),20(3):214-217. 

[20] Luo, Z., 2003. Effect of modified atmosphere storage on the physiology of mulberry fruit. J Chin Inst Food Sci Technol, (in Chinese),3(3):51-54. 

[21] McMurchie, E.J., McGlasson, W.B., Eaks, I.L., 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature, 237(5352):235-236. 


[22] Moon, H., Callahan, A.M., 2004. Developmental regulation of peach ACC oxidase promoter-GUS fusions in transgenic tomato fruits. J Exp Bot, 55(402):1519-1528. 


[23] Oeller, P.W., Lu, M.W., Taylor, L.P., 1991. Reversible inhibition of fruit senescence by antisense RNA. Science, 254(5030):437-439. 


[24] Ozga, J.A., Reinecke, D.M., 2003. Hormonal interactions in fruit development. J Plant Growth Regul, 22(1):73-81. 


[25] Pan, G., Lou, C., 2008. Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Morus alba L.) and analysis of the function of this gene in plant development and stresses response. J Plant Physiol, 165(11):1204-1213. 


[26] Ren, J., Leng, P., 2010. Role of abscisic acid and ethylene in fruit maturation of sweet cherry. Acta Hort Sin, (in Chinese),37(2):199-206. 

[27] Rieu, I., Cristescu, S.M., Harren, F.J.M., 2005.  Rp-ACS1, a flood-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. J Exp Bot, 56(413):841-849. 


[28] Sebasti, C.H., Hardin, S.C., Clouse, S.D., 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys, 428(1):81-91. 


[29] Seymour, G.B., Taylor, J.E., Tucke, G.A., 1993. Biochemistry of Fruit Ripening, Chapman & Hall, Springer Netherlands,:


[30] Sun, L., Zhang, M., Ren, J., 2010. Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol, 10(1):257


[31] Sunako, T., Sakuraba, W., Senda, M., 1999. An allele of the ripening-specific 1-aminocyclopropane-1-carboxylate synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiol, 119(4):1297-1303. 


[32] Tatsuki, M., Mori, H., 2001. Phosphorylation of tomato 1-amino-cyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem, 276(30):28051-28057. 


[33] Tatsuki, M., Haji, T., Yamaguchi, M., 2006. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot, 57(6):1281-1289. 


[34] Tsuchisaka, A., Theologis, A., 2004. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. PNAS, 101(8):2275-2280. 


[35] Varanasi, V., Shin, S., Mattheis, J., 2011. Expression profiles of the MdACS3 gene suggest a function as an accelerator of apple (Malus×domestica) fruit ripening. Posth Biol Technol, 62(2):141-148. 


[36] Wang, A., Yamakake, J., Kudo, H., 2009. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiol, 151(1):391-399. 


[37] Wang, K.L.C., Li, H., Ecker, J.R., 2002. Ethylene biosynthesis and signaling networks. Plant Cell, 14(Suppl.):S131-S151. 


[38] Xie, Y.H., Zhu, B.Z., Yang, X.L., 2006. Delay of postharvest ripening and senescence of tomato fruit through virus-induced LeACS2 gene silencing. Posth Biol Technol, 42(1):8-15. 


[39] Yang, S.F., Hoffmann, N.E., 1984. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 35(1):155-189. 


[40] Zaharah, S.S., Singh, Z., Symons, G.M., 2013. Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Posth Biol Technol, 75:37-44. 


[41] Zhang, M., Yuan, B., Leng, P., 2009. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot, 60(6):1579-1588. 


[42] Zhang, Z., Ren, J.S., Clifton, I.J., 2004. Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase—the ethylene-forming enzyme. Chem Biol, 11(10):1383-1394. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE