Full Text:   <3043>

Summary:  <1859>

CLC number: Q78

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-11-15

Cited: 0

Clicked: 6122

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.12 P.1064-1074

http://doi.org/10.1631/jzus.B1600573


Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo


Author(s):  Mohammed A. El-Magd, Ayman A. Saleh, Abeer A. Nafeaa, Shymaa M. El-Komy, Mohamed A. Afifi

Affiliation(s):  Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, Egypt; more

Corresponding email(s):   mohrizk73@yahoo.com

Key Words:  Insulin-like growth factor 1 (IGF1), IGF1R, Single nucleotide polymorphism (SNP), Growth traits, Buffalo


Mohammed A. El-Magd, Ayman A. Saleh, Abeer A. Nafeaa, Shymaa M. El-Komy, Mohamed A. Afifi. Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo[J]. Journal of Zhejiang University Science B, 2017, 18(12): 1064-1074.

@article{title="Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo",
author="Mohammed A. El-Magd, Ayman A. Saleh, Abeer A. Nafeaa, Shymaa M. El-Komy, Mohamed A. Afifi",
journal="Journal of Zhejiang University Science B",
volume="18",
number="12",
pages="1064-1074",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600573"
}

%0 Journal Article
%T Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo
%A Mohammed A. El-Magd
%A Ayman A. Saleh
%A Abeer A. Nafeaa
%A Shymaa M. El-Komy
%A Mohamed A. Afifi
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 12
%P 1064-1074
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600573

TY - JOUR
T1 - Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo
A1 - Mohammed A. El-Magd
A1 - Ayman A. Saleh
A1 - Abeer A. Nafeaa
A1 - Shymaa M. El-Komy
A1 - Mohamed A. Afifi
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 12
SP - 1064
EP - 1074
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600573


Abstract: 
The insulin-like growth factor 1 (IGF1) gene is a member of the group of somatotropin axis genes that play a significant role in cell proliferation and growth of muscles. Here, we searched for polymorphisms in buffalo IGF1 and found two novel single nucleotide polymorphisms (SNPs), G64A and G280A, in the noncoding sequences of exon 1 and exon 4, respectively. Statistical analysis of different genotypes showed that the individuals with GG genotypes had significantly (P<0.05) higher body weight (BW) and average daily gain (ADG) than those with other genotypes at ages of 3–6 months in G64A SNP and 6–9 months in G280A SNP. The combined genotypes of these two SNPs produced three haplotypes, GG/GG, AG/AG, and AA/AA, which were significantly associated (P<0.0001) with BW and ADG at an age from 3 to 12 months. buffaloes with the homozygous GG/GG haplotype showed higher growth performance than other buffaloes. The two SNPs were correlated with mRNA levels of IGF1 and IGF1 receptor (IGF1R) in semitendinosus muscle as well as with the serum concentration level of IGF1. Also, buffaloes with GG/GG haplotype showed higher mRNA and serum concentration levels. The data revealed that these two SNPs could be valuable genetic markers for selection of Egyptian buffaloes for better performance in the population.

水牛IGF1基因多态性与其生长性状、血清浓度以及IGF1和IGF1R基因表达的相关性研究

目的:探讨胰岛素样生长因子1(insulin-like growth factor 1,IGF1)基因单核苷酸多态性(SNP)与埃及水牛生长性状的关联性。
创新点:发现IGF1基因多态性对埃及水牛的生长性状、血液生化指标和基因表达有显著影响,并为埃及水牛的选育提供重要的分子遗传标记。
方法:以200头埃及水牛为试验对象,对其IGF1基因的多态性进行检测,并分析其与生长性状、血液生理生化指标和基因表达的相关性。
结论:在水牛IGF1基因多态性分析中,发现两个新的SNP位点(G64A和G280A)分别分布在外显子1和外显子4的非编码区。不同基因型的统计分析表明,G64A和G280A位点的GG基因型水牛个体分别在3~6月龄和6~9月龄的体重(BW)和平均日增重(ADG)均显著高于其他基因型(P<0.05)。这两个SNPs位点的组合基因型产生了三种单倍体GG/GG、AG/AG和AA/AA。在3~12月龄的水牛个体中,单倍体基因型与BW和ADG存在显著关联(P<0.0001)。纯合的GG/GG单倍体基因型水牛生长性能优于其他水牛。两个SNP位点与半腱肌中IGF1IGF1R的mRNA水平以及IGF1血清浓度水平相关。此外,GG/GG单倍体水牛表现出较高的mRNA和血清浓度水平。综上所述,这两种SNP位点G64A和G280A可作为埃及水牛生长性状选育的重要分子遗传标记。

关键词:胰岛素样生长因子1(IGF1);胰岛素样生长因子1受体(IGF1R);单核苷酸多态性(SNP);生长性状;水牛

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abo-Al-Ela, H.G., El-Magd, M.A., El-Nahas, A.F., et al., 2014. Association of a novel SNP in exon 10 of the IGF2 gene with growth traits in Egyptian water buffalo (Bubalus bubalis). Trop. Anim. Health Prod., 46(6):947-952.

[2]Andrade, P.C., Grossi, D.A., Paz, C.C., et al., 2008. Association of an insulin-like growth factor 1 gene microsatellite with phenotypic variation and estimated breeding values of growth traits in Canchim cattle. Anim. Genet., 39(5):480-485.

[3]Barrett, J.C., Fry, B., Maller, J., et al., 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2):263-265.

[4]Bishop, M.D., Simmen, R.C., Simmen, F.A., et al., 1989. The relationship of insulin-like growth factor-I with postweaning performance in Angus beef cattle. J. Anim. Sci., 67(11):2872-2880.

[5]Chung, E.R., Kim, W.T., 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Australas J. Anim. Sci., 18(8):1061-1065.

[6]de la Reyna, X.F., Montoya, H.M., Castrellón, V.V., et al., 2010. Polymorphisms in the IGF1 gene and their effect on growth traits in Mexican beef cattle. Genet. Mol. Res., 9(2):875-883.

[7]Dierkes, B., Kriegesmann, B., Silva, A., et al., 1999. Characterisation of a G→A transition polymorphism within an Eco130I site of intron 3 of the insulin-like growth factor-1 (IGF1) gene of swamp buffaloes (Bubalus b. bubalis kerebau). Anim. Genet., 30(5):405.

[8]El-Magd, M.A., Abbas, H.E., El-kattawy, A.M., et al., 2013. Novel polymorphisms of the IGF1R gene and their association with average daily gain in Egyptian buffalo (Bubalus bubalis). Domest. Anim. Endocrinol., 45(2):105-110.

[9]El-Magd, M.A., Abo-Al-Ela, H.G., El-Nahas, A., et al., 2014. Effects of a novel SNP of IGF2R gene on growth traits and expression rate of IGF2R and IGF2 genes in gluteus medius muscle of Egyptian buffalo. Gene, 540(2):133-139.

[10]Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics. Longman, England.

[11]Fatima, S., Bhatt, S.M., Bhong, C.D., et al., 2009. Genetic polymorphism study of IGF-I gene in buffaloes of Gujarat. Buffalo Bull., 28(3):159-164.

[12]Fotsis, T., Murphy, C., Gannon, F., 1990. Nucleotide sequence of the bovine insulin-like growth factor 1 (IGF-1) and its IGF-1A precursor. Nucleic Acids Res., 18(3):676.

[13]Ge, W., Davis, M.E., Hines, H.C., et al., 2001. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. J. Anim. Sci., 79(7):1757-1762.

[14]Gerrard, D.E., Okamura, C.S., Ranalletta, M.A., et al., 1998. Developmental expression and location of IGF-I and IGF-II mRNA and protein in skeletal muscle. J. Anim. Sci., 76(4):1004-1011.

[15]Grosse, W.M., Kappes, S.M., Laegreid, W.W., et al., 1999. Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes. Mamm. Genome, 10(11):1062-1069.

[16]Ho Sui, S.J., Fulton, D.L., Arenillas, D.J., et al., 2007. POSSUM: integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res., 35(Suppl. 2):W245-W252.

[17]Islam, K.K., Vinsky, M., Crews, R.E., et al., 2009. Association analyses of a SNP in the promoter of IGF1 with fat deposition and carcass merit traits in hybrid, Angus and Charolais beef cattle. Anim. Genet., 40(5):766-769.

[18]Jones, J.I., Clemmons, D.R., 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev., 16(1):3-34.

[19]Komar, A.A., 2007. Silent SNPs: impact on gene function and phenotype. Pharmacogenomics, 8(8):1075-1080.

[20]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4):402-408.

[21]Maj, A., Snochowski, M., Siadkowska, E., et al., 2008. Polymorphism in genes of growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF1) and its association with both the IGF1 expression in liver and its level in blood in Polish Holstein-Friesian cattle. Neuro Endocrinol. Lett., 29(6):981-989.

[22]Mirzaei, A., Sharifiyazdi, H., Ahmadi, M.R., et al., 2012. The effect of polymorphism in gene of insulin-like growth factor-I on the serum periparturient concentration in Holstein dairy cows. Asian Pacific J. Trop. Biomed., 2(10):765-769.

[23]Mullen, M.P., Lynch, C.O., Waters, S.M., et al., 2011. Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows. Genet. Mol. Res., 10(3):1819-1830.

[24]Nagaraja, S.C., Aggrey, S.E., Yao, J., et al., 2000. Trait association of a genetic marker near the IGF-I gene in egg-laying chickens. J. Hered., 91(2):150-156.

[25]Norton, C.R., Chen, Y., Han, X.H., et al., 2013. Absence of a major role for the Snai1 and Snai3 genes in regulating skeletal muscle regeneration in mice. PLoS Curr. Musc. Dystrophy, 5:1-12.

[26]Oksbjerg, N., Gondret, F., Vestergaard, M., 2004. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest. Anim. Endocrinol., 27(3):219-240.

[27]Quandt, K., Frech, K., Karas, H., et al., 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res., 23(23):4878-4884.

[28]Sahana, G., Guldbrandtsen, B., Bendixen, C., et al., 2010. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle. Anim. Genet., 41(6):579-588.

[29]Shavlakadze, T., Chai, J., Maley, K., et al., 2010. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo. J. Cell Sci., 123(6):960-971.

[30]Siadkowska, E., Zwierzchowski, L., Oprządek, J., et al., 2006. Effect of polymorphism in IGF-1 gene on production traits in Polish Holstein-Friesian cattle. Anim. Sci. Papers Rep., 24(3):225-237.

[31]Umansky, K.B., Gruenbaum-Cohen, Y., Tsoory, M., et al., 2015. Runx1 transcription factor is required for myoblasts proliferation during muscle regeneration. PLoS Genet., 11(8):e1005457.

[32]Vaiman, D., Mercier, D., Moazami-Goudarzi, K., et al., 1994. A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm Genome, 5(5):288-297.

[33]van Laere, A.S., Nguyen, M., Braunschweig, M., et al., 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425(6960):832-836.

[34]Wang, Q., Fang, C., Liu, W.J., et al., 2011. A novel mutation at exon 4 of IGF-1 gene in three indigenous goat breeds in China. Asian J. Anim. Vet. Adv., 6(6):627-635.

[35]Wang, Y., Price, S.E., Jiang, H., 2003. Cloning and characterization of the bovine class 1 and class 2 insulin-like growth factor-I mRNAs. Domest. Anim. Endocrinol., 25(4):315-328.

[36]Werner, H., Adamo, M., Roberts, C.T., et al., 1994. Molecular and cellular aspects of insulin-like growth factor action. Vitam. Horm., 48:1-58.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE