Full Text:   <2235>

Summary:  <99>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-12-31

Received: 2024-03-07

Revision Accepted: 2024-11-29

Crosschecked: 2025-12-31

Cited: 0

Clicked: 2012

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu DONG

https://orcid.org/0000-0002-2744-2701

Zitong YANG

https://orcid.org/0000-0003-4716-1090

Zhinan XIA

https://orcid.org/0000-0003-0423-4405

Yuyong WANG

https://orcid.org/0000-0002-7964-4436

Cheng ZHANG

https://orcid.org/0000-0003-3758-5172

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.12 P.1192-1215

http://doi.org/10.1631/jzus.B2400132


Constructing a PANoptosis-based prognostic signature to evaluate the immune landscape and therapeutic response in clear cell renal cell carcinoma


Author(s):  Yu DONG, Zitong YANG, Zhinan XIA, Jiahao LIAO, Zhiming CUI, Shenhao XU, Bing LIU, Liangliang REN, Tengda WANG, Wei GUO, Shuwen WANG, Yuyong WANG, Cheng ZHANG

Affiliation(s):  Department of Urology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; more

Corresponding email(s):   b1518118@zju.edu.cn, zhangcheng13836182568@zju.edu.cn

Key Words:  Pyroptosis, apoptosis, and necroptosis (PANoptosis), Clear cell renal cell carcinoma (ccRCC), Prognosis, Tumor immune microenvironment, Immunotherapy response


Yu DONG, Zitong YANG, Zhinan XIA, Jiahao LIAO, Zhiming CUI, Shenhao XU, Bing LIU, Liangliang REN, Tengda WANG, Wei GUO, Shuwen WANG, Yuyong WANG, Cheng ZHANG. Constructing a PANoptosis-based prognostic signature to evaluate the immune landscape and therapeutic response in clear cell renal cell carcinoma[J]. Journal of Zhejiang University Science B, 2025, 26(12): 1192-1215.

@article{title="Constructing a PANoptosis-based prognostic signature to evaluate the immune landscape and therapeutic response in clear cell renal cell carcinoma",
author="Yu DONG, Zitong YANG, Zhinan XIA, Jiahao LIAO, Zhiming CUI, Shenhao XU, Bing LIU, Liangliang REN, Tengda WANG, Wei GUO, Shuwen WANG, Yuyong WANG, Cheng ZHANG",
journal="Journal of Zhejiang University Science B",
volume="26",
number="12",
pages="1192-1215",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400132"
}

%0 Journal Article
%T Constructing a PANoptosis-based prognostic signature to evaluate the immune landscape and therapeutic response in clear cell renal cell carcinoma
%A Yu DONG
%A Zitong YANG
%A Zhinan XIA
%A Jiahao LIAO
%A Zhiming CUI
%A Shenhao XU
%A Bing LIU
%A Liangliang REN
%A Tengda WANG
%A Wei GUO
%A Shuwen WANG
%A Yuyong WANG
%A Cheng ZHANG
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 12
%P 1192-1215
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400132

TY - JOUR
T1 - Constructing a PANoptosis-based prognostic signature to evaluate the immune landscape and therapeutic response in clear cell renal cell carcinoma
A1 - Yu DONG
A1 - Zitong YANG
A1 - Zhinan XIA
A1 - Jiahao LIAO
A1 - Zhiming CUI
A1 - Shenhao XU
A1 - Bing LIU
A1 - Liangliang REN
A1 - Tengda WANG
A1 - Wei GUO
A1 - Shuwen WANG
A1 - Yuyong WANG
A1 - Cheng ZHANG
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 12
SP - 1192
EP - 1215
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400132


Abstract: 
ObjectiveTo identify pyroptosis, apoptosis, and necroptosis (PANoptosis)-related genes (PRGs) in clear cell renal cell carcinoma (ccRCC) for patient stratification and prognosis prediction.
MethodsWe used differential expression analysis and weighted gene co-expression network analysis (WGCNA) to identify ccRCC-specific PRGs. A prognostic model, the PANoptosis-index (PANI), was constructed using least absolute shrinkage and selection operator (LASSO) and Cox regression. The PANI model, comprising PRGs, was validated through single-cell RNA-sequencing (scRNA-seq), immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Patient cohorts were categorized into high- and low-PANI groups, and the model’s performance was appraised using various metrics. External validation was performed with the E-MTAB-1980 dataset. Functional and gene set enrichment analyses distinguished biological differences between groups. Mutational landscapes and tumor immune microenvironments were compared. Sensitivity to immunotherapy and antineoplastic drugs was also predicted using PANI. The effects of Z-DNA-binding protein 1 (ZBP1) on cell proliferation and migration were assessed by cell counting kit-8 (CCK-8) and Transwell assays.
ResultsWe identified five PRGs (ZBP1, tumor necrosis factor superfamily protein 14 (TNFSF14), cyclin-dependent kinase inhibitor 3 (CDKN3), parathyroid hormone-like hormone (PTHLH), and heme-oxygenase 1 (HMOX1)) constituting PANI, independently associated with ccRCC patient prognosis. The PANI-based nomogram, integrated with clinical factors, demonstrated high predictive accuracy for prognosis. High-PANI patients exhibited distinct co-mutation patterns in ccRCC driver genes and lower survival probabilities, with an enriched immune-related functional profile, indicating an activated immune environment. These patients also showed increased sensitivity to immunotherapy and antineoplastic drugs. The knockdown of ZBP1, a key PRG in the PANI, significantly reduced ccRCC cell proliferation and migration.
ConclusionsPANI provides precise prognosis and immunotherapy response predictions for ccRCC patients, facilitating individualized treatment strategies.

基于泛凋亡的预后标志物构建预测模型以评估肾透明细胞癌的免疫景观和治疗反应

董宇1,杨紫彤2,夏志楠3,廖家豪1,崔志明4,徐沈灏1,刘兵1,任亮亮1,王腾达5,郭炜1,王书文1,王于勇6,7,张诚1
1浙江大学医学院附属第四医院泌尿外科,浙江大学国际医学院,浙江大学国际健康医学研究院,中国义乌市,322000
2浙江省肿瘤医院泌尿外科,中国科学院杭州医学研究所,中国杭州市,310022
3哈尔滨医科大学附属第四医院泌尿外科,中国哈尔滨市,150081
4浙江大学医学院附属第四医院放射科,浙江大学国际医学院,浙江大学国际健康医学研究院,中国义乌市,322000
5贵州省人民医院泌尿外科,中国贵阳市,550002
6西湖大学医学院附属杭州市第一人民医院泌尿外科,中国杭州市,310006
7浙江中医药大学第四临床医学院,中国杭州市,310006
摘要:目的:识别与肾透明细胞癌(ccRCC)中泛凋亡(PANoptosis)相关的基因(PRGs),以用于患者分层和预后评估。方法:通过差异表达分析与加权基因共表达网络分析(WGCNA)筛选ccRCC特异的PRGs,并利用LASSO和Cox回归构建预后模型,即PANoptosis指数(PANI)。该模型在单细胞RNA测序(scRNA-seq)、免疫组化和实时荧光定量逆转录聚合酶链反应(RT-qPCR)中得到验证。根据PANI将患者队列分为高低两组,使用多种指标评估该模型性能,并在E-MTAB-1980数据集中进行外部验证。通过功能和基因集富集分析揭示两组间的生物学差异,并比较了突变景观和肿瘤免疫微环境。进一步基于PANI预测患者对免疫疗法和抗肿瘤药物的敏感性。此外,通过CCK-8和Transwell实验评估ZBP1对ccRCC细胞增殖和迁移能力的影响。结果:筛选出ZBP1TNFSF14CDKN3PTHLHHMOX1共5个PRGs构建PANI模型,该模型与ccRCC患者预后独立相关。通过与临床因素的结合,基于PANI的Nomogram显示出高度的预测准确性。高PANI患者在ccRCC驱动基因中表现出独特的共突变模式和较低的生存概率,且免疫相关功能特征丰富,提示其肿瘤免疫微环境处于激活状态;该组患者对免疫疗法和抗肿瘤药物的敏感性也有所增加。敲低ZBP1能显著抑制ccRCC细胞的增殖和迁移能力。结论:PANI可作为ccRCC患者预后和免疫疗法反应预测的有效工具,有助于制定个体化治疗策略。

关键词:泛凋亡(PANoptosis);肾透明细胞癌(ccRCC);预后;肿瘤免疫微环境;免疫治疗反应

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AdedoyinO, BodduR, TraylorA, et al., 2018. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Amer J Physiol-Renal Physiol, 314(5):F702-F714.

[2]AllemaniC, MatsudaT, di CarloV, et al., 2018. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 391(10125):1023-1075.

[3]AranD, HuZC, ButteAJ, 2017. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol, 18:220.

[4]BechtE, GiraldoNA, LacroixL, et al., 2016. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol, 17:218.

[5]The Cancer Genome Atlas Research Network, 2013. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456):43-49.

[6]CapitanioU, MontorsiF, 2016. Renal cancer. Lancet, 387(10021):894-906.

[7]ChenBB, KhodadoustMS, LiuCL, et al., 2018. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol, 1711:243-259.

[8]ChenW, GullettJM, TweedellRE, et al., 2023. Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. Eur J Immunol, 53(11):2250235.

[9]ChenX, KangR, KroemerG, et al., 2021. Organelle-specific regulation of ferroptosis. Cell Death Differ, 28(10):2843-2856.

[10]Dall'OlioFG, RizzoA, MollicaV, et al., 2021. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: a meta-analysis. Immunotherap, 13(3):257-270.

[11]DuttaS, GangulyA, ChatterjeeK, et al., 2023. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors. Biology (Basel), 12(2):218.

[12]EllisMJ, GilletteM, CarrSA, et al., 2013. Connecting genomic alterations to cancer biology with proteomics: the NCI clinical proteomic tumor analysis consortium. Cancer Discov, 3(10):1108-1112.

[13]FriedmanJ, HastieT, TibshiraniR, 2010. Regularization paths for generalized linear models via coordinate descent. J Stat Softw, 33(1):1-22.

[14]GeeleherP, CoxN, HuangRS, 2014. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE, 9(9):e107468.

[15]GurungP, AnandPK, Subbarao MalireddiRK, et al., 2014. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol, 192(4):1835-1846.

[16]GuvenDC, SahinTK, ErulE, et al., 2022. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Mol Biosci, 9:1039121.

[17]HänzelmannS, CasteloR, GuinneyJ, 2013. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 14:7.

[18]HassanniaB, WiernickiB, IngoldI, et al., 2018. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest, 128(8):3341-3355.

[19]HuW, YangY, FanCX, et al., 2016. Clinical and pathological significance of N-Myc downstream-regulated gene 2 (NDRG2) in diverse human cancers. Apoptosis, 21(6):675-682.

[20]JiangWY, DengZL, DaiXZ, et al., 2021. PANoptosis: a new insight into oral infectious diseases. Front Immunol, 12:789610.

[21]KarkiR, SharmaBR, LeeE, et al., 2020. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight, 5(12):e136720.

[22]KarkiR, SundaramB, SharmaBR, et al., 2021a. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep, 37(3):109858.

[23]KarkiR, SharmaBR, TuladharS, et al., 2021b. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 184(1):149-168.e17.

[24]Ketelut-CarneiroN, FitzgeraldKA, 2022. Apoptosis, pyroptosis, and necroptosis—oh my! The many ways a cell can die. J Mol Biol, 434(4):167378.

[25]KuriakoseT, ManSM, Subbarao MalireddiRK, et al., 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol, 1(2):aag2045.

[26]KyrochristosID, ZiogasDE, RoukosDH, 2019. Dynamic genome and transcriptional network-based biomarkers and drugs: precision in breast cancer therapy. Med Res Rev, 39(3):1205-1227.

[27]LamkanfiM, KannegantiTD, van DammeP, et al., 2008. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics, 7(12):2350-2363.

[28]LangfelderP, HorvathS, 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9:559.

[29]LeeS, KarkiR, WangYQ, et al., 2021. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature, 597(7876):415-419.

[30]LiAL, CaoCC, GanY, et al., 2022. ZNF677 suppresses renal cell carcinoma progression through N6-methyladenosine and transcriptional repression of CDKN3. Clin Transl Med, 12(6):e906.

[31]LiTW, FanJY, WangBB, et al., 2017. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res, 77(21):e108-e110.

[32]LinJF, HuPS, WangYY, et al., 2022. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct Target Ther, 7:54.

[33]LoveMI, HuberW, AndersS, 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15(12):550.

[34]LukensJR, GurungP, VogelP, et al., 2014. Dietary modulation of the microbiome affects autoinflammatory disease. Nature, 516(7530):246-269.

[35]MaJ, ZhouWY, YuanYF, et al., 2023. PSMD12 interacts with CDKN3 and facilitates pancreatic cancer progression. Cancer Gene Ther, 30(8):1072-1083.

[36]MalireddiRK, IppaguntaS, LamkanfiM, et al., 2010. Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J Immunol, 185(6):3127-3130.

[37]MalireddiRK, GurungP, MavuluriJ, et al., 2018. TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J Exp Med, 215(4):1023-1034.

[38]MalireddiRK, GurungP, KesavardhanaS, et al., 2020. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J Exp Med, 217(3):e20191644.

[39]MariathasanS, TurleySJ, NicklesD, et al., 2018. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 554(7693):544-548.

[40]MayakondaA, LinDC, AssenovY, et al., 2018. Maftools: eff

[41]icient and comprehensive analysis of somatic variants in cancer. Genome Res, 28(11):1747-1756.

[42]NallarSC, XuDQ, KalvakolanuDV, 2017. Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges. Cytokine, 89:160-172.

[43]ParkHH, KimHR, ParkSY, et al., 2021. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer, 20:107.

[44]PlattnerC, FinotelloF, RiederD, 2020. Deconvoluting tumor-infiltrating immune cells from RNA-seq data using quanTIseq. Methods Enzymol, 636:261-285.

[45]RamachandranM, VaccaroA, van de WalleT, et al., 2023. Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer Cell, 41(6):1134-1151.e10.

[46]RiniBI, BattleD, FiglinRA, et al., 2019. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC). J Immunother Cancer, 7:354.

[47]RizzoA, MollicaV, TateoV, et al., 2023. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study. Cancer Immunol Immunother, 72(6):1381-1394.

[48]Rodriguez-VidaA, HutsonTE, BellmuntJ, et al., 2017. New treatment options for metastatic renal cell carcinoma. ESMO Open, 2(2):e000185.

[49]SantoniM, ButiS, MyintZW, et al., 2024. Real-world outcome of patients with advanced renal cell carcinoma and intermediate- or poor-risk international metastatic renal cell carcinoma database consortium criteria treated by immune-oncology combinations: differential effectiveness by risk group? Eur Urol Oncol, 7(1):102-111.

[50]SatoY, YoshizatoT, ShiraishiY, et al., 2013. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet, 45(8):860-867.

[51]StelzerG, RosenN, PlaschkesI, et al., 2016. The geneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 54:1.30.1-1.30.33.

[52]StuartT, ButlerA, HoffmanP, et al., 2019. Comprehensive integration of single-cell data. Cell, 177(7):1888-1902.e21.

[53]SubramanianA, TamayoP, MoothaVK, et al., 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102(43):15545-15550.

[54]SunW, LiPC, WangM, et al., 2023. Molecular characterization of PANoptosis-related genes with features of immune dysregulation in systemic lupus erythematosus. Clin Immunol, 253:109660.

[55]SungH, FerlayJ, SiegelRL, et al., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians, 71(3):209-249.

[56]TangDL, ChenX, KangR, et al., 2021. Ferroptosis: molecular mechanisms and health implications. Cell Res, 31(2):107-125.

[57]TangR, XuJ, ZhangB, et al., 2020. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol, 13:110.

[58]ThomasPD, EbertD, MuruganujanA, et al., 2022. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci, 31(1):8-22.

[59]UhlénM, FagerbergL, HallströmBM, et al., 2015. Tissue-based map of the human proteome. Science, 347(6220):1260419.

[60]van AllenEM, MiaoD, SchillingB, et al., 2015. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 350(6257):207-211.

[61]WaltonJ, LawsonK, PrinosP, et al., 2023. PBRM1, SETD2 and BAP1–the trinity of 3p in clear cell renal cell carcinoma. Nat Rev Urol, 20(2):96-115.

[62]WangZ, GersteinM, SnyderM, 2009. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1):57-63.

[63]YoshiharaK, ShahmoradgoliM, MartínezE, et al., 2013. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun, 4:2612.

[64]YuC, CaoHW, HeXF, et al., 2017. Cyclin-dependent kinase inhibitor 3 (CDKN3) plays a critical role in prostate cancer via regulating cell cycle and DNA replication signaling. Biomed Pharmacother, 96:1109-1118.

[65]ZhangM, ZhaiW, MiaoJJ, et al., 2022. Single cell analysis reveals intra-tumour heterogeneity, microenvironment and potential diagnosis markers for clear cell renal cell carcinoma. Clin Transl Med, 12(5):e713.

[66]ZhangN, LiuXH, QinJL, et al., 2023. LIGHT/TNFSF14 promotes CAR-T cell trafficking and cytotoxicity through reversing immunosuppressive tumor microenvironment. Mol Ther, 31(9):2575-2590.

[67]ZhangXM, YuSS, LiXB, et al., 2023. Research progress on the interaction between oxidative stress and platelets: another avenue for cancer? Pharmacol Res, 191:106777.

[68]ZhaoPF, WangM, ChenM, et al., 2020. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials, 254:120142.

[69]ZhengM, KarkiR, VogelP, et al., 2020. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell, 181(3):674-687.e13.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE