CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-12-12
Cited: 0
Clicked: 782
Pengfei GAO, Wentao ZHANG, Yujie LIN, Ruijie LU, Zijian LOU, Gang LU, Ruolang PAN, Yunfang CHEN. Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism[J]. Journal of Zhejiang University Science B, 2023, 24(12): 1151-1158.
@article{title="Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism",
author="Pengfei GAO, Wentao ZHANG, Yujie LIN, Ruijie LU, Zijian LOU, Gang LU, Ruolang PAN, Yunfang CHEN",
journal="Journal of Zhejiang University Science B",
volume="24",
number="12",
pages="1151-1158",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300200"
}
%0 Journal Article
%T Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism
%A Pengfei GAO
%A Wentao ZHANG
%A Yujie LIN
%A Ruijie LU
%A Zijian LOU
%A Gang LU
%A Ruolang PAN
%A Yunfang CHEN
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 12
%P 1151-1158
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300200
TY - JOUR
T1 - Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism
A1 - Pengfei GAO
A1 - Wentao ZHANG
A1 - Yujie LIN
A1 - Ruijie LU
A1 - Zijian LOU
A1 - Gang LU
A1 - Ruolang PAN
A1 - Yunfang CHEN
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 12
SP - 1151
EP - 1158
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300200
Abstract: Oral squamous cell carcinoma (OSCC) is a prevalent malignant tumor affecting the head and neck region (Leemans et al., 2018). It is often diagnosed at a later stage, leading to a poor prognosis (Muzaffar et al., 2021; Li et al., 2023). Despite advances in OSCC treatment, the overall 5-year survival rate of OSCC patients remains alarmingly low, falling below 50% (Jehn et al., 2019; Johnson et al., 2020). According to statistics, only 50% of patients with oral cancer can be treated with surgery. Once discovered, it is more frequently at an advanced stage. In addition, owing to the aggressively invasive and metastatic characteristics of OSCC, most patients die within one year of diagnosis. Hence, the pursuit of novel therapeutic drugs and treatments to improve the response of oral cancer to medication, along with a deeper understanding of their effects, remains crucial objectives in oral cancer research (Johnson et al., 2020; Bhat et al., 2021; Chen et al., 2023; Ruffin et al., 2023).
[1]Al-IshaqRK, AbotalebM, KubatkaP, et al., 2019. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9):430.
[2]BhatAA, YousufP, WaniNA, et al., 2021. Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Sig Transduct Target Ther, 6:12.
[3]BhusalCK, UtiDE, MukherjeeD, et al., 2023. Unveiling Nature’s potential: promising natural compounds in Parkinson’s disease management. Parkinsonism Relat Disord, 115:105799.
[4]ChenP, ZhangJY, ShaBB, et al., 2017. Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Oncotarget, 8(16):27471-27480.
[5]ChenQM, WangYH, ShuaiJ, 2023. Current status and future prospects of stomatology research. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(10):853-867.
[6]CookMT, 2018. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer (Dove Med Press), 10:89-100.
[7]DavellaR, MamidalaE, 2021. Luteolin: a potential multiple targeted drug effectively inhibits diabetes mellitus protein targets. J Pharm Res Int, 33(44B):161-171.
[8]FangJ, ZhouQ, ShiXL, et al., 2007. Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis, 28(3):713-723.
[9]FangXJ, YuSX, LuYL, et al., 2000. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA, 97(22):11960-11965.
[10]HanT, LiHL, ZhangQY, et al., 2007. Bioactivity-guided fractionation for anti-inflammatory and analgesic properties and constituents of Xanthium strumarium L. Phytomedicine, 14(12):825-829.
[11]HeZJ, LiXQ, WangZ, et al., 2023. Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer’s disease. Redox Biol, 66:102848.
[12]IidaK, NaikiT, Naiki-ItoA, et al., 2020. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci, 111(4):1165-1179.
[13]IliakiS, BeyaertR, AfoninaIS, 2021. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol, 193:114747.
[14]ImranM, RaufA, Abu-IzneidT, et al., 2019. Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother, 112:108612.
[15]JehnP, DittmannJ, ZimmererR, et al., 2019. Survival rates according to tumour location in patients with surgically treated oral and oropharyngeal squamous cell carcinoma. Anticancer Res, 39(5):2527-2533.
[16]JohnsonDE, BurtnessB, LeemansCR, et al., 2020. Head and neck squamous cell carcinoma. Nat Rev Dis Primers, 6:92.
[17]KangKA, PiaoMJ, RyuYS, et al., 2017. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol, 51(4):1169-1178.
[18]LakheraS, RanaM, DevlalK, et al., 2022. A comprehensive exploration of pharmacological properties, bioactivities and inhibitory potentiality of luteolin from Tridax procumbens as anticancer drug by in-silico approach. Struct Chem, 33(3):703-719.
[19]LeemansCR, SnijdersPJF, BrakenhoffRH, 2018. The molecular landscape of head and neck cancer. Nat Rev Cancer, 18(5):269-282.
[20]LiQF, TieY, AluA, et al., 2023. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Sig Transduct Target Ther, 8:31.
[21]LiangGH, ZhaoJL, DouYX, et al., 2022. Mechanism and experimental verification of Luteolin for the treatment of osteoporosis based on network pharmacology. Front Endocrinol, 13:866641.
[22]LimW, YangC, BazerFW, et al., 2016. Luteolin inhibits proliferation and induces apoptosis of human placental choriocarcinoma cells by blocking the PI3K/AKT pathway and regulating sterol regulatory element binding protein activity. Biol Reprod, 95(4):82.
[23]LinD, KuangG, WanJY, et al., 2017. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol Rep, 37(2):895-902.
[24]LinSC, LiuCJ, ChiuCP, et al., 2004. Establishment of OC3 oral carcinoma cell line and identification of NF-κB activation responses to areca nut extract. J Oral Pathol Med, 33(2):79-86.
[25]LinY, ShiRX, WangX, et al., 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets, 8(7):634-646.
[26]Lopez-LazaroM, 2009. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem, 9(1):31-59.
[27]MaoYJ, MengLK, LiuHY, et al., 2022. Therapeutic potential of traditional Chinese medicine for vascular endothelial growth factor. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(5):353-364.
[28]MuruganathanN, DhanapalAR, BaskarV, et al., 2022. Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: a review. Metabolites, 12(11):1145.
[29]MuzaffarJ, BariS, KirtaneK, et al., 2021. Recent advances and future directions in clinical management of head and neck squamous cell carcinoma. Cancers, 13(2):338.
[30]NabaviSF, BraidyN, GortziO, et al., 2015. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull, 119(Part A):1-11.
[31]NaiaL, PinhoCM, DentoniG, et al., 2021. Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biol, 19:57.
[32]PanduranganAK, DharmalingamP, SadagopanSKA, et al., 2013. Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/β-catenin/GSK-3β signaling. J Environ Pathol Toxicol Oncol, 32(2):131-139.
[33]PotočnjakI, ŠimićL, GobinI, et al., 2020. Antitumor activity of luteolin in human colon cancer SW620 cells is mediated by the ERK/FOXO3a signaling pathway. Toxicol Vitro, 66:104852.
[34]PuYS, ZhangT, WangJH, et al., 2018. Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs. J Cancer, 9(20):3669-3675.
[35]RehfeldtSCH, SilvaJ, AlvesC, et al., 2022. Neuroprotective effect of luteolin-7-O-glucoside against 6-OHDA-induced damage in undifferentiated and RA-differentiated SH-SY5Y cells. Int J Mol Sci, 23(6):2914.
[36]Reyes-FariasM, Carrasco-PozoC, 2019. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci, 20(13):3177.
[37]RuffinAT, LiH, VujanovicL, et al., 2023. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer, 23(3):173-188.
[38]SeelingerG, MerfortI, WölfleU, et al., 2008a. Anti-carcinogenic effects of the flavonoid luteolin. Molecules, 13(10):2628-2651.
[39]SeelingerG, MerfortI, SchemppCM, 2008b. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med, 74(14):1667-1677.
[40]SunBY, LiuYQ, HeDH, et al., 2021. Traditional Chinese medicines and their active ingredients sensitize cancer cells to TRAIL-induced apoptosis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(3):190-203.
[41]TuorkeyMJ, 2016. Molecular targets of luteolin in cancer. Eur J Cancer Prev, 25(1):65-76.
[42]WangGG, LuXH, LiW, et al., 2011. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Alternat Med, 2011:323171.
[43]WangHT, YaoXQ, HuangKL, et al., 2022. Low-dose dexamethasone in combination with luteolin improves myocardial infarction recovery by activating the antioxidative response. Biomed Pharmacother, 151:113121.
[44]ZhangWB, LiDB, ShanY, et al., 2023. Luteolin intake is negatively associated with all-cause and cardiac mortality among patients with type 2 diabetes mellitus. Diabetol Metab Syndr, 15:59.
[45]ZhouZ, ChenJ, ZhangZX, et al., 2022. Solubilization of luteolin in PVP40 solid dispersion improves inflammation-induced insulin resistance in mice. Eur J Pharm Sci, 174:106188.
Open peer comments: Debate/Discuss/Question/Opinion
<1>