Full Text:   <2864>

Summary:  <106>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-06-23

Received: 2024-04-22

Revision Accepted: 2024-08-10

Crosschecked: 2025-09-23

Cited: 0

Clicked: 1945

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xufei YU

https://orcid.org/0009-0009-7989-8637

Jiaqi BAO

https://orcid.org/0000-0001-5265-8064

Yingming WEI

https://orcid.org/0000-0003-1638-3707

Lili CHEN

https://orcid.org/0000-0002-0620-8844

Zhongxiu WANG

https://orcid.org/0000-0001-8498-2678

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.9 P.881-896

http://doi.org/10.1631/jzus.B2400203


NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated withPorphyromonas gingivalis lipopolysaccharide


Author(s):  Xufei YU, Jiaqi BAO, Yingming WEI, Yuting YANG, Wenlin YUAN, Lili CHEN, Zhongxiu WANG

Affiliation(s):  Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University,Hangzhou310009,China; more

Corresponding email(s):   21518119@zju.edu.cn, chenlili_1030@zju.edu.cn

Key Words:  Periodontitis, Nuclear factor erythroid 2-related factor 2 (NRF2), Dual-specific phosphatase 1 (DUSP1), Mitogen-activated protein kinase (MAPK), Oxidative stress, Osteogenesis


Xufei YU, Jiaqi BAO, Yingming WEI, Yuting YANG, Wenlin YUAN, Lili CHEN, Zhongxiu WANG. NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated withPorphyromonas gingivalis lipopolysaccharide[J]. Journal of Zhejiang University Science B, 2025, 26(9): 881-896.

@article{title="NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated withPorphyromonas gingivalis lipopolysaccharide",
author="Xufei YU, Jiaqi BAO, Yingming WEI, Yuting YANG, Wenlin YUAN, Lili CHEN, Zhongxiu WANG",
journal="Journal of Zhejiang University Science B",
volume="26",
number="9",
pages="881-896",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400203"
}

%0 Journal Article
%T NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated withPorphyromonas gingivalis lipopolysaccharide
%A Xufei YU
%A Jiaqi BAO
%A Yingming WEI
%A Yuting YANG
%A Wenlin YUAN
%A Lili CHEN
%A Zhongxiu WANG
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 9
%P 881-896
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400203

TY - JOUR
T1 - NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated withPorphyromonas gingivalis lipopolysaccharide
A1 - Xufei YU
A1 - Jiaqi BAO
A1 - Yingming WEI
A1 - Yuting YANG
A1 - Wenlin YUAN
A1 - Lili CHEN
A1 - Zhongxiu WANG
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 9
SP - 881
EP - 896
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400203


Abstract: 
Backgroundperiodontitis is characterized by alveolar bone resorption, aggravated by osteoblast dysfunction, and associated with intracellular oxidative stress linked to the nuclear factor erythroid 2-related factor 2 (NRF2) level. We evaluated the molecular mechanism of periodontitis onset and development and the role of NRF2 in osteogenic differentiation.
MethodsPrimary murine mandibular osteoblasts were extracted and exposed toPorphyromonas gingivalis lipopolysaccharide (Pg-LPS) or other stimuli. Reactive oxygen species (ROS) and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining were used to detect intracellular oxidative stress. Alkaline phosphatase staining and alizarin red S staining were used to detect the osteogenic differentiation of osteoblasts. Immunofluorescence and western blotting were used to determine the changes in the mitogen-activated protein kinase (MAPK) pathway and related molecule activities. Immunofluorescence colocalization and co-immunoprecipitation were performed to examine the nuclear translocation of NRF2 and its interaction with dual-specific phosphatase 1 (DUSP1) in cells.
ResultsLigated tissue samples showed higher alveolar bone resorption rate and lower NRF2 level than healthy periodontal tissue samples.Pg-LPS increased intracellular oxidative stress levels and inhibited osteogenic differentiation, whereas changes in NRF2 expression were correlated with changes in the oxidative stress and osteogenesis rate. NRF2 promoted the dephosphorylation of the MAPK pathway by nuclear translocation and the upregulation of DUSP1 expression, thus enhancing the osteogenic differentiation capacity of mandibular osteoblasts. The interaction between NRF2 and DUSP1 was observed.
ConclusionsNRF2 and its nuclear translocation can regulate the osteogenic differentiation of mandibular osteoblasts underPg-LPS conditions by interacting with DUSP1 in a process linked to the MAPK pathway. These findings form the basis of periodontitis treatment.

NRF2经核转位与DUSP1互作参与卟啉单胞菌脂多糖调控小鼠下颌骨成骨细胞分化的机制研究

俞徐菲1,2,包佳琦1,韦应明1,杨玉婷1,袁文琳1,陈莉丽1,王中秀1
1浙江大学医学院附属第二医院牙周病专科,中国杭州市,310009
2浙江大学医学院附属第二医院肿瘤研究所,中国杭州市,310009
摘要:本研究旨在探讨在牙龈卟啉单胞菌脂多糖(Pg-LPS)作用下,核因子E2相关因子2(NRF2)与双特异性磷酸酶1(DUSP1)的互作对成骨细胞分化的影响及其潜在分子机制。我们通过构建小鼠实验性牙周炎模型,采用显微计算机断层扫描和免疫组化染色观察小鼠牙槽骨吸收及牙周组织区域内NRF2表达情况,同时采用免疫组化染色法检测牙周健康者和牙周炎患者牙龈及牙槽骨组织中NRF2含量变化。本研究通过Pg-LPS刺激小鼠来源的下颌骨成骨细胞,采用活性氧(ROS)染色和线粒体膜电位检测试剂盒检测细胞氧化应激水平;通过碱性磷酸酶(ALP)染色和茜素红S染色等评估细胞成骨分化能力;采用免疫荧光和蛋白质免疫印迹测定NRF2、DUSP1、成骨分化和丝裂原活化蛋白激酶(MAPK)通路相关基因和蛋白变化;利用免疫荧光染色和免疫共沉淀法检测成骨细胞中NRF2核转位功能及其与DUSP1的相互作用。研究结果发现,与健康组相比,牙周炎组小鼠发生严重的牙槽骨吸收,并在牙周炎小鼠局部牙周组织区域内观察到NRF2低表达。同时,在牙周炎患者牙龈组织与牙槽骨组织中也同样检测到NRF2表达水平的降低。体外实验发现,Pg-LPS呈浓度依赖性增加细胞内ROS含量,并降低细胞线粒体膜电位。Pg-LPS也可抑制成骨分化相关基因蛋白Runt相关转录因子2(RUNX2)、ALP和骨钙素(OCN)的表达,并减少ALP阳性细胞数及矿化结节数量。同时本研究发现,Pg-LPS刺激可显著降低NRF2表达与核转位水平。当加入NRF2抑制剂时,细胞氧化应激活动增强,成骨分化受到抑制;而NRF2激活剂可减弱细胞氧化应激活动,并促进细胞成骨分化。在NRF2抑制剂或小干扰核糖核酸(siRNA)的作用下,DUSP1表达量降低,MAPK通路磷酸化水平上升;加入NRF2激活剂或过表达NRF2基因时,则结果相反。此外,NRF2与DUSP1间可能存在蛋白互作。综上,NRF2通过核转位功能与DUSP1互作,并经MAPK通路调控Pg-LPS条件下小鼠下颌骨成骨细胞的成骨分化,这为牙周炎治疗提供了新思路。

关键词:牙周炎;核因子E2相关因子2(NRF2);双特异性磷酸酶1(DUSP1);丝裂原活化蛋白激酶(MAPK);氧化应激;成骨分化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbeT,HajishengallisG,2013.Optimization of the ligature-induced periodontitis model in mice.J Immunol Methods,394(1-2):49-54.

[2]BairdL,SwiftS,LlèresD,et al.,2014.Monitoring Keap1‒Nrf2 interactions in single live cells.Biotechnol Adv,32(6):1133-1144.

[3]BhattaraiG,PoudelSB,KookSH,et al.,2016.Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis.Acta Biomater,29:398-408.

[4]BuTT,ZhengJX,LiuL,et al.,2021.Milk proteins and their derived peptides on bone health: biological functions, mechanisms, and prospects.Compr Rev Food Sci Food Saf,20(2):2234-2262.

[5]BunpengN,BoriboonhirunsarnD,BoriboonhirunsarnC,et al.,2022.Association between gestational diabetes mellitus and periodontitis via the effect of reactive oxygen species in peripheral blood cells.J Periodontol,93(5):758-769.

[6]ChenCT,ShihYRV,KuoTK,et al.,2008.Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells.Stem Cells,26(4):960-968.

[7]ChenXR,ZhuXB,WeiA,et al.,2021.Nrf2 epigenetic derepression induced by running exercise protects against osteoporosis.Bone Res,9:15.

[8]ChungJH,KimYS,NohK,et al.,2014.Deferoxamine promotes osteoblastic differentiation in human periodontal ligament cells via the nuclear factor erythroid 2‍‐‍related factor‐mediated antioxidant signaling pathway.J Periodontal Res,49(5):563-573.

[9]FangH,YangK,TangP,et al.,2020.Glycosylation end products mediate damage and apoptosis of periodontal ligament stem cells induced by the JNK‍-mitochondrial pathway.Aging,12(13):12850-12868.

[10]FiedlerT,SalamonA,AdamS,et al.,2013.Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells.Exp Cell Res,319(18):2883-2892.

[11]FuXH,ChenCZ,LiS,et al.,2019.Dual-specificity phosphatase 1 regulates cell cycle progression and apoptosis in cumulus cells by affecting mitochondrial function, oxidative stress, and autophagy.Am J Physiol Cell Physiol,317(6):C1183-C1193.

[12]GanXQ,ZhangL,LiuBL,et al.,2018.CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation.J Physiol Biochem,74(3):395-402.

[13]GouHQ,ChenX,ZhuXM,et al.,2022.Sequestered SQSTM1/p62 crosstalk with Keap1/NRF2 axis in hPDLCs promotes oxidative stress injury induced by periodontitis.Free Radical Biol Med,190:62-74.

[14]GreenblattMB,ShimJH,ZouWG,et al.,2010.The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice.J Clin Invest,120(7):2457-2473.

[15]GreenblattMB,ShimJH,GlimcherLH,2013.Mitogen-activated protein kinase pathways in osteoblasts.Annu Rev Cell Dev Biol,29:63-79.

[16]GuoL,LiL,2022.LIN28A alleviates inflammation, oxidative stress, osteogenic differentiation and mineralization in lipopolysaccharide (LPS)‍-treated human periodontal ligament stem cells.Exp Ther Med,23(6):411.

[17]HerzmannN,SalamonA,FiedlerT,et al.,2017.Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation.Exp Cell Res,350(1):115-122.

[18]KadonoH,KidoJI,KataokaM,et al.,1999.Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract fromPorphyromonas gingivalis.Infect Immun,67(6):2841-2846.

[19]KasnakG,FiratliE,KönönenE,et al.,2018.Elevated levels of 8-OHdG and PARK7/DJ-1 in peri-implantitis mucosa.Clin Implant Dent Relat Res,20(4):574-582.

[20]KimJM,YangYS,ParkKH,et al.,2019.The ERK MAPK pathway is essential for skeletal development and homeostasis.Int J Mol Sci,20(8):1803.

[21]KimJM,LinCJ,StavreZ,et al.,2020.Osteoblast-osteoclast communication and bone homeostasis.Cells,9(9):2073.

[22]KnudsenNØ,AndersenSD,LützenA,et al.,2009.Nuclear translocation contributes to regulation of DNA excision repair activities.DNA Repair,8(6):682-689.

[23]KonopkaT,KrólK,KopećW,et al.,2007.Total antioxidant status and 8-hydroxy-2'-deoxyguanosine levels in gingival and peripheral blood of periodontitis patients.Arch Immunol Ther Exp,55(6):417-425.

[24]LiH,DengYJ,TanMM,et al.,2020.Low-intensity pulsed ultrasound upregulates osteogenesis under inflammatory conditions in periodontal ligament stem cells through unfolded protein response.Stem Cell Res Ther,11:215.

[25]LiJ,WangHY,ZhengZH,et al.,2018.Mkp-1 cross-talks with Nrf2/Ho-1 pathway protecting against intestinal inflammation.Free Radical Biol Med,124:541-549.

[26]LiXM,SunXY,ZhangXR,et al.,2018.Enhanced oxidative damage and Nrf2 downregulation contribute to the aggravation of periodontitis by diabetes mellitus.Oxid Med Cell Longev,2018:9421019.

[27]LiuJ,WangXX,ZhengM,et al.,2023.Oxidative stress in human gingival fibroblasts from periodontitis versus healthy counterparts.Oral Dis,29(3):1214-1225.

[28]LiuSY,YangLY,MuS,et al.,2018.Epigallocatechin-3-gallate ameliorates glucocorticoid-induced osteoporosis of ratsin vivo andin vitro.Front Pharmacol,9:447.

[29]LoosBG,van DykeTE,2020.The role of inflammation and genetics in periodontal disease.Periodontol 2000,83(1):26-39.

[30]LuoL,ChenYR,WangHY,et al.,2018.Mkp-1 protects mice against toxin-induced liver damage by promoting the Nrf2 cytoprotective response.Free Radical Biol Med,115:361-370.

[31]MaQ,2013.Role of Nrf2 in oxidative stress and toxicity.Annu Rev Pharmacol Toxicol,53:401-426.

[32]MaXY,ChenX,DuanZH,et al.,2023.Circadian rhythm disruption exacerbates the progression of macrophage dysfunction and alveolar bone loss in periodontitis.Int Immunopharmacol,116:109796.

[33]National Research Council,2011.Guide for the Care and Use of Laboratory Animals, 8th Ed. The National Academies Press, Washington, USA.

[34]Sánchez-de-DiegoC,PedrazzaL,Pimenta-LopesC,et al.,2021.NRF2 function in osteocytes is required for bone homeostasis and drives osteocytic gene expression.Redox Biol,40:101845.

[35]SczepanikFSC,GrossiML,CasatiM,et al.,2020.Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way.Periodontol 2000,84(1):45-68.

[36]SiesH,BerndtC,JonesDP,2017.Oxidative stress.Annu Rev Biochem,86:715-748.

[37]Silva-IslasCA,MaldonadoPD,2018.Canonical and non-canonical mechanisms of Nrf2 activation.Pharmacol Res,134:92-99.

[38]SuHX,GornitskyM,VellyAM,et al.,2009.Salivary DNA, lipid, and protein oxidation in nonsmokers with periodontal disease.Free Radical Biol Med,46(7):914-921.

[39]SunYX,LiL,CorryKA,et al.,2015.Deletion of Nrf2 reduces skeletal mechanical properties and decreases load-driven bone formation.Bone,74:1-9.

[40]TakahashiT,2011.Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro.Calcif Tissue Int,88(4):336-347.

[41]TangX,MaSH,LiYR,et al.,2020.Evaluating the activity of sodium butyrate to prevent osteoporosis in rats by promoting osteal GSK-3β/Nrf2 signaling and mitochondrial function.J Agric Food Chem,68(24):6588-6603.

[42]WangHY,LiuKH,ChiZX,et al.,2019.Interplay of MKP-1 and Nrf2 drives tumor growth and drug resistance in non-small cell lung cancer.Aging,11(23):11329-11346.

[43]WangL,ZhangX,XiongXX,et al.,2022.Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke.Antioxidants,11(12):2377.

[44]WangYF,ChangYY,ZhangXM,et al.,2022.Salidroside protects against osteoporosis in ovariectomized rats by inhibiting oxidative stress and promoting osteogenesis via Nrf2 activation.Phytomedicine,99:154020.

[45]WuMR,ChenGQ,LiYP,2016.TGF‍-‍β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease.Bone Res,4:16009.

[46]XiaoJ,HanQG,YuZC,et al.,2023.Morroniside inhibits inflammatory bone loss through the TRAF6-mediated NF-‍κB/MAPK signalling pathway.Pharmaceuticals,16(10):1438.

[47]YenCH,HsuCM,HsiaoSY,et al.,2020.Pathogenic mechanisms of myeloma bone disease and possible roles for NRF2.Int J Mol Sci,21(18):6723.

[48]YostS,Duran-PinedoAE,TelesR,et al.,2015.Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis.Genome Med,7:27.

[49]ZhouR,ChenFB,LiuHX,et al.,2021.Berberine ameliorates the LPS-induced imbalance of osteogenic and adipogenic differentiation in rat bone marrow-derived mesenchymal stem cells.Mol Med Rep,23(5):350.

[50]ZhuCH,ZhaoY,WuXY,et al.,2020.The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway.J Periodontal Res,55(3):381-391.

[51]ZhuL,LinZW,WangG,et al.,2019.MicroRNA-495 downregulates AQP1 and facilitates proliferation and differentiation of osteoblasts in mice with tibial fracture through activation of p38 MAPK signaling pathway.Sci Rep,9:16171.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE