Full Text:
<592>
CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-28
Cited: 0
Clicked: 706
Citations:
Bibtex
RefMan
EndNote
GB/T7714
Abstract: On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual
cells. However, state-of-the-art microfluidic chips for droplet sorting still suffer from low Based on the building principle of additive manufacturing, printing orientation mainly determines the tribological properties
of joint prostheses. In this study, we created a polyether-ether-ketone (PEEK) joint prosthesis using fused filament fabrication
and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn
calf serum. An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical
capture of wear debris by the 3D-printed groove morphology, which is significantly impacted by the printing orientation of
PEEK. When the printing orientation was parallel to the sliding direction of friction, the number and size of the transfer film
increased due to higher steady stress. This transfer film protected the matrix and reduced the friction coefficient and wear
rate of friction pairs by 39.13% and 74.33%, respectively. Furthermore, our findings provide a novel perspective regarding
the role of printing orientation in designing knee prostheses, facilitating its practical applications.sorting speeds, sample loss, and
labor-intensive preparation procedures. Here, we demonstrate the development of a novel microfluidic chip that integrates
droplet generation, on-demand electrostatic droplet charging, and high-throughput sorting. The charging electrode is a copper
wire buried above the nozzle of the microchannel, and the deflecting electrode is the phosphate buffered saline in the
microchannel, which greatly simplifies the structure and fabrication process of the chip. Moreover, this chip is capable
of high-frequency droplet generation and sorting, with a frequency of 11.757 kHz in the drop state. The chip completes
the selective charging process via electrostatic induction during droplet generation. On-demand charged microdroplets can
arbitrarily move to specific exit channels in a three-dimensional (3D)-deflected electric field, which can be controlled according
to user requirements, and the flux of droplet deflection is thereby significantly enhanced. Furthermore, a lossless modification
strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring
the frequency of droplet generation in real time and feeding it back to the charging signal. This chip has great potential for
quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
西安交通大学机械工程学院李涤尘教授团队|3D打印方向对聚醚醚酮人工关节材料的生物摩擦学性能影响
本研究论文聚焦聚醚醚酮(PEEK)在熔融沉积成型过程中打印方向对其生物摩擦学性能的影响规律研究。自然关节复杂的组织解剖结构和多样的力学环境使其易受创伤、疾病等因素影响,人工关节假体可以替代缺损部位,为患者消除疼痛和重建运动功能。PEEK在体内除了具有良好的生物相容性和稳定的理化性能,还具有匹配骨组织的力学强度和优异的耐摩擦性能,这使其成为新一代聚合物人工关节材料。3D打印为个性化人工关节假体提供了制备技术的支持,同时成型原理也决定了打印方向是影响其摩擦学性能的重要因素之一。本研究通过熔融沉积成型制备了具有不同打印方向的PEEK销,和超高分子量聚乙烯(UHMWPE)盘组成摩擦副,在25%小牛血清润滑液中通过销盘实验研究摩擦学性能。通过磨损后的表面形貌和物相分析,发现了UHMWPE盘产生的磨屑转移到PEEK表面,形成牢固的转移膜。分析了转移膜的数量、尺寸与打印方向之间的关系,揭示了相近的材料特性、阶梯状的表面纹理和稳定的应力作用对转移膜形成的协同作用。在此基础上,以膝关节假体为例,提出了一种股骨单髁假体打印方向的分区设计路径:外层设计为同心圆路径,中间层设计为垂直线路径,内层设计为多孔路径,实现了耐摩擦、力学和骨融合性能的多功能设计。本研究建立了打印方向和PEEK摩擦学性能之间的映射关系,并为关节假体的多功能性设计提出了一种新的打印策略。
Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail:
cjzhang@zju.edu.cn
Copyright © 2000 -
2025 Journal of Zhejiang University-SCIENCE
@article{title="Transfer film effects induced by 3D-printed polyether-ether-ketone
with excellent tribological properties for joint prosthesis",
author="Yang Li, Jibao Zheng, Changning Sun & Dichen Li",
journal="Journal of Zhejiang University Science D",
volume="7",
number="1",
pages="43-56",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-023-00258-y"
}
Open peer comments: Debate/Discuss/Question/Opinion
<1>