CLC number:
On-line Access: 2022-02-19
Received: 2021-07-23
Revision Accepted: 2022-01-11
Crosschecked: 2022-02-19
Cited: 0
Clicked: 251
Tingshu Su, Ao Zheng, Lingyan Cao, Lingjie Peng, Xiao Wang, Jie Wang, Xianzhen Xin & Xinquan Jiang. Adhesion-enhancing coating embedded with osteogenesis-promoting PDA/HA nanoparticles for peri-implant soft tissue sealing and osseointegration[J]. Journal of Zhejiang University Science D, 2022, 5(2): 233-248.
@article{title="Adhesion-enhancing coating embedded with osteogenesis-promoting PDA/HA nanoparticles for peri-implant soft tissue sealing and osseointegration",
author="Tingshu Su, Ao Zheng, Lingyan Cao, Lingjie Peng, Xiao Wang, Jie Wang, Xianzhen Xin & Xinquan Jiang",
journal="Journal of Zhejiang University Science D",
volume="5",
number="2",
pages="233-248",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-022-00184-5"
}
%0 Journal Article
%T Adhesion-enhancing coating embedded with osteogenesis-promoting PDA/HA nanoparticles for peri-implant soft tissue sealing and osseointegration
%A Tingshu Su
%A Ao Zheng
%A Lingyan Cao
%A Lingjie Peng
%A Xiao Wang
%A Jie Wang
%A Xianzhen Xin & Xinquan Jiang
%J Journal of Zhejiang University SCIENCE D
%V 5
%N 2
%P 233-248
%@ 1869-1951
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-022-00184-5
TY - JOUR
T1 - Adhesion-enhancing coating embedded with osteogenesis-promoting PDA/HA nanoparticles for peri-implant soft tissue sealing and osseointegration
A1 - Tingshu Su
A1 - Ao Zheng
A1 - Lingyan Cao
A1 - Lingjie Peng
A1 - Xiao Wang
A1 - Jie Wang
A1 - Xianzhen Xin & Xinquan Jiang
J0 - Journal of Zhejiang University Science D
VL - 5
IS - 2
SP - 233
EP - 248
%@ 1869-1951
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-022-00184-5
Abstract: Following dental implantation, the characteristic bacterial milieu of the oral cavity may lead to peri-implant inflammation, which can negatively impact osseointegration and cause implant failure. To improve soft tissue sealing around the implant, enhance osseointegration, and improve implant success rates, this paper proposes a composite multifunctional coating (PHG) prepared using gelatin and polydopamine/hydroxyapatite nanoparticles, investigates the effects of this novel coating on cell adhesion, proliferation, antibacterial activity, osteogenic differentiation, and evaluates its immune-related properties. The PHG coating was proved to have satisfactory hydrophilicity and wettability for cell attachment. Furthermore, it improved the expression of adhesion-related genes and proteins in human gingival fibroblasts, indicating its adhesion-promoting effect. Additionally, bone marrow mesenchymal stem cells exhibited strong osteogenic differentiation potential and mineralization on PHG-coated surfaces. Notably, the PHG coating exhibited antibacterial activity against Streptococcus mutans, as well as anti-inflammatory effects, potentially via the regulation of macrophages. Therefore, the proposed PHG coating may promote soft tissue sealing and bone bonding, providing a potential strategy for the surface modification of dental implants.
Open peer comments: Debate/Discuss/Question/Opinion
<1>