CLC number: TN402
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-12-23
Cited: 0
Clicked: 6518
Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser. Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 262-271.
@article{title="Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects",
author="Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="2",
pages="262-271",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500349"
}
%0 Journal Article
%T Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects
%A Zamshed Iqbal Chowdhury
%A Md. Istiaque Rahaman
%A M. Shamim Kaiser
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 2
%P 262-271
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500349
TY - JOUR
T1 - Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects
A1 - Zamshed Iqbal Chowdhury
A1 - Md. Istiaque Rahaman
A1 - M. Shamim Kaiser
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 2
SP - 262
EP - 271
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500349
Abstract: The single-walled carbon nanotube (SWCNT) is a promising nanostructure in the design of future high-frequency system-on-chip, especially in network-on-chip, where the quality of communication between intellectual property (IP) modules is a major concern. Shrinking dimensions of circuits and systems have restricted the use of high-frequency signal characteristics for frequencies up to 1000 GHz. Four key electrical parameters, impedance, propagation constant, current density, and signal delay time, which are crucial in the design of a high-quality interconnect, are derived for different structural configurations of SWCNT. Each of these parameters exhibits strong dependence on the frequency range over which the interconnect is designed to operate, as well as on the configuration of SWCNT. The novelty of the proposed model for solving next-generation high-speed integrated circuit (IC) interconnect challenges is illustrated, compared with existing theoretical and experimental results in the literature.
In this paper, the authors proposed a mathematical model for high frequency analysis of CNT interconnects. The overall quality is good.
[1]Allan, A., Edenfeld, D., Joyner, W.H., et al., 2002. 2001 technology roadmap for semiconductors. Computer, 35(1):42-53.
[2]Anantram, M.P., Léonard, F., 2006. Physics of carbon nano-tube electronic devices. Rep. Prog. Phys., 69(3):507-561.
[3]Baughman, R.H., Zakhidov, A.A., de Heer, W.A., 2002. Carbon nanotubes–-the route toward applications. Science, 297(5582):787-792.
[4]Burke, P.J., 2002a. Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1(3):129-144.
[5]Burke, P.J., 2002b. An RF circuit model for carbon nano-tubes. Proc. 2nd IEEE Conf. on Nanotechnology, p.393-396.
[6]Cursaru, D., Enescu, D., Ciuparu, D., 2011. Control of (n, m) selectivity in single wall carbon nanotubes (SWNT) growth by varying the Co-Ni ratio in bi-metallic Co-Ni-MCM 41 catalysts. Rev. Chim.-Bucharest, 62(7):792-798.
[7]Dragoman, M., Grenier, K., Dubuc, D., et al., 2006. Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nano-tubes. Appl. Phys. Lett., 8(15):1-3.
[8]Fagan, A.J., Hároz, E.H., Ihly, R., et al., 2015. Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano, 9(5):5377-5390.
[9]Galand, R., Brunetti, G., Arnaud, L., et al., 2013. Microstructural void environment characterization by electron imaging in 45 nm technology node to link electromigration and Copper microstructure. Microelectron. Eng., 106:168-171.
[10]Huang, C.Y., Hu, C.Y., Pan, H.C., et al., 2005. Electrooptical responses of carbon nanotube-doped liquid crystal devices. Jpn. J. Appl. Phys., 44(11):8077-8081.
[11]Iqbal, M.Z., Puigdemont, J.P., Eom, J., et al., 2014. High-frequency impedance of single-walled carbon nanotube networks on transparent flexible substrate. Phys. Status Sol. B, 251(12):2461-2465.
[12]Ismail, Y., Friedman, E.G., Neves, J.L., 2000. Equivalent Elmore delay for RLC trees. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 19(1):83-97.
[13]Jespersen, T.S., Nygaard, J., 2005. Charge trapping in carbon nanotube loops demonstrated by electrostatic force microscopy. Nano Lett., 5(9):1838-1841.
[14]Journet, C., Maser, W.K., Bernier, P., et al., 1997. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644):756-758.
[15]Kane, C., Balents, L., Fisher, M.P., 1997. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett., 79(25):5086-5089.
[16]Kreupl, F., 2008. Carbon nanotubes in microelectronic applications. In: Hierold, C., Brand, O., Fedder, G.K. (Eds.), Carbon Nanotube Devices: Properties, Modelling, Integration and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p.1-42.
[17]Liang, F., Wang, G., Ding, W., 2011. Estimation of time delay and repeater insertion in multiwall carbon nano-tube interconnects. IEEE Trans. Electron. Dev., 58(8):2712-2720.
[18]Liu, C., Cheng, H.M., 2013. Carbon nanotubes: controlled growth and application. Mater. Today, 16(1-2):19-28.
[19]McEuen, P.L., Fuhrer, M.S., Park, H., 2002. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol., 99(1):78-85.
[20]Nieuwoudt, A., Massoud, Y., 2006. Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans. Nanotechnol., 5(6):758-765.
[21]Nihei, M., Horibe, M., Kawabata, A., et al., 2004. Carbon nanotube vias for future LSI interconnects. Proc. IEEE Int. Interconnect Technology Conf., p.251-253.
[22]Ounaies, Z., Park, C., Wise, K.E., et al., 2003. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol., 63(11):1637-1646.
[23]Srivastava, N., Banarjee, K., 2005. Performance analysis of carbon nanotube interconnects for VLSI applications. IEEE/ACM Int. Conf. Computer-Aided Design, p.383-390.
[24]Srivastava, N., Li, H., Kreupl, F., et al., 2009. On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol., 8(4):542-559.
[25]Thess, A., Lee, R., Nikolaev, P., et al., 1996. Crystalline ropes of metallic carbon nanotubes. Science, 273(5274):483-487.
[26]Yuzvinsky, T.D., Mickelson, W., Aloni, S., et al., 2006. Shrinking a carbon nanotube. Nano Lett., 6(12):2718-2722.
[27]Zhao, Y.P., Wei, B.Q., Ajayan, P.M., et al., 2001. Frequency-dependent electrical transport in carbon nanotubes. Phys. Rev. B, 64(20):201402.
[28]Zhou, Y., Sreekala, S., Ajayan, P.M., et al., 2008. Resistance of copper nanowires and comparison with carbon nano-tube bundles for interconnect applications using first principles calculations. J. Phys.-Condens. Matter, 20(9):1-5.
Open peer comments: Debate/Discuss/Question/Opinion
<1>