Full Text:   <2920>

Summary:  <1634>

CLC number: TP273; TP183

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-07-08

Cited: 0

Clicked: 7825

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zai-sheng Pan

http://orcid.org/0000-0003-1273-2519

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.7 P.834-846

http://doi.org/10.1631/FITEE.1601397


Development and application of a neural network based coating weight control system for a hot-dip galvanizing line


Author(s):  Zai-sheng Pan, Xuan-hao Zhou, Peng Chen

Affiliation(s):  Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   panzs@zju.edu.cn

Key Words:  Neural network, Hot-dip galvanizing line (HDGL), Coating weight control


Zai-sheng Pan, Xuan-hao Zhou, Peng Chen. Development and application of a neural network based coating weight control system for a hot-dip galvanizing line[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(7): 834-846.

@article{title="Development and application of a neural network based coating weight control system for a hot-dip galvanizing line",
author="Zai-sheng Pan, Xuan-hao Zhou, Peng Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="7",
pages="834-846",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601397"
}

%0 Journal Article
%T Development and application of a neural network based coating weight control system for a hot-dip galvanizing line
%A Zai-sheng Pan
%A Xuan-hao Zhou
%A Peng Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 7
%P 834-846
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601397

TY - JOUR
T1 - Development and application of a neural network based coating weight control system for a hot-dip galvanizing line
A1 - Zai-sheng Pan
A1 - Xuan-hao Zhou
A1 - Peng Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 7
SP - 834
EP - 846
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601397


Abstract: 
The hot-dip galvanizing line (HDGL) is a typical order-driven discrete-event process in steelmaking. It has some complicated dynamic characteristics such as a large time-varying delay, strong nonlinearity, and unmeasured disturbance, all of which lead to the difficulty of an online coating weight controller design. We propose a novel neural network based control system to solve these problems. The proposed method has been successfully applied to a real production line at VaLin LY Steel Co., Loudi, China. The industrial application results show the effectiveness and efficiency of the proposed method, including significant reductions in the variance of the coating weight and the transition time.

基于神经网络的热镀锌层厚控制系统的研究与应用

概要:钢铁生产企业中热镀锌生产线是一个典型的订单驱动离散制造过程。该系统呈现许多复杂动态特性,包括大时变系统时滞、强非线性和不可测的扰动项。这些因素增大了在线镀层厚度控制系统的设计难度。提出一种新的基于神经网络的控制方法,并成功应用在华菱涟钢集团的热镀锌生产线。实际生产运行结果表明,镀层厚度的波动性以及产品规格切换时的过渡时间显著减小,验证了该方法的有效性。

关键词:神经网络;热镀锌线;镀层厚度控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adams J, Miles LB, Parker DJ, et al., 1996. Coating mass control on No. 2 galvanizing line at LTV steel’s Indiana Harbor works. Iron Steel Eng, 73(1):123-131.

[2]Bloch G, Sirou F, Eustache V, et al., 1997. Neural intelligent control for a steel plant. IEEE Trans Neur Netw, 8(4): 910-918.

[3]Elsaadawy EA, Hanumanth GS, Balthazaar AKS, et al., 2007. Coating weight model for the continuous hot-dip galvanizing process. Metall Mater Trans B, 38(3):413-424.

[4]Fei J, Zhang Y, Wang JS, et al., 2016. Development and application of coating thickness control system for cold rolling continuous galvanizing line. Iron Steel, 51(5): 57-61 (in Chinese).

[5]Guelton N, Lerouge A, 2010. Coating weight control on ArcelorMittal’s galvanizing line at Florange Works. Contr Eng Pract, 18(10):1220-1229.

[6]Guelton N, Lopès C, Sordini H, 2016. Cross coating weight control by electromagnetic strip stabilization at the continuous galvanizing line of ArcelorMittal Florange. Metall Mater Trans B, 47(4):2666-2680.

[7]Jordan CE, Goggins KM, Benscoter AO, et al., 1993. Metallographic preparation technique for hot-dip galvanized and galvannealed coatings on steel. Mater Charact, 31(2):107-114.

[8]Lu YZ, 1996. Industrial Intelligent Control: Fundamentals and Applications. Wiley, New York, USA.

[9]Lu YZ, Markward SW, 1997. Development and application of an integrated neural system for an HDCL. IEEE Trans Neur Netw, 8(6):1328-1337.

[10]Marder AR, 2000. The metallurgy of zinc-coated steel. Prog Mater Sci, 45(3):191-271.

[11]Martínez-de-Pisón FJ, Pernía A, Jiménez-Macías EB, et al., 2010. Overall model of the dynamic behaviour of the steel strip in an annealing heating furnace on a hot-dip galvanizing line. Rev Metal, 46(5):405-420.

[12]Martínez-de-Pisón FJ, Celorrio L, Pérez-de-la-Parte M, et al., 2011. Optimising annealing process on hot dip galvanising line based on robust predictive models adjusted with genetic algorithms. Iron Steel, 38(3):218-228.

[13]Pal D, Datta A, Sahay SS, 2006. An efficient model for batch annealing using a neural network. Mater Manuf Process, 21(5):567-572.

[14]Sanz-García A, Fernández-Ceniceros J, Fernández-Martínez R, et al., 2012. Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace. Iron Steel, 41(2):87-98.

[15]Shin KT, Park HD, Chung WK, 2006. Synthesis method for the modelling and robust control of coating weight at galvanizing process. ISIJ Int, 46(10):1442-1451.

[16]Thornton JA, Graff HF, 1976. An analytical description of the jet finishing process for hot-dip metallic coatings on strip. Metall Trans B, 7(4):607-618.

[17]Tu CV, Wood DH, 1996. Wall pressure and shear stress measurements beneath an impinging jet. Exp Therm Fluid Sci, 13(4):364-373.

[18]Warwick K, Rees D, 1988. Industrial Digital Control Systems. IET, London, England.

[19]Yu W, Li XO, 2008. Optimization of crude oil blending with neural networks and bias-update scheme. Eng Intell Syst, 16(1):28-37.

[20]Zhang Y, Shao FQ, Wang JS, et al., 2011. Adaptive control of coating weight for continuous hot-dip galvanizing. J Northeast Univ (Nat Sci), 32(11):1525-1528 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE