Full Text:   <2592>

CLC number: TM91

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-12-20

Cited: 0

Clicked: 6836

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yong-gang Peng

http://orcid.org/0000-0002-0960-3807

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.12 P.2046-2057

http://doi.org/10.1631/FITEE.1601497


Hierarchical control for parallel bidirectional power converters of a grid-connected DC microgrid


Author(s):  Hui-yong Hu, Yong-gang Peng, Yang-hong Xia, Xiao-ming Wang, Wei Wei, Miao Yu

Affiliation(s):  College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   huhuiyong@zju.edu.cn, pengyg@zju.edu.cn

Key Words:  Parallel bidirectional power converters, Hierarchical control, DC microgrid


Hui-yong Hu, Yong-gang Peng, Yang-hong Xia, Xiao-ming Wang, Wei Wei, Miao Yu. Hierarchical control for parallel bidirectional power converters of a grid-connected DC microgrid[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(12): 2046-2057.

@article{title="Hierarchical control for parallel bidirectional power converters of a grid-connected DC microgrid",
author="Hui-yong Hu, Yong-gang Peng, Yang-hong Xia, Xiao-ming Wang, Wei Wei, Miao Yu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="12",
pages="2046-2057",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601497"
}

%0 Journal Article
%T Hierarchical control for parallel bidirectional power converters of a grid-connected DC microgrid
%A Hui-yong Hu
%A Yong-gang Peng
%A Yang-hong Xia
%A Xiao-ming Wang
%A Wei Wei
%A Miao Yu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 12
%P 2046-2057
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601497

TY - JOUR
T1 - Hierarchical control for parallel bidirectional power converters of a grid-connected DC microgrid
A1 - Hui-yong Hu
A1 - Yong-gang Peng
A1 - Yang-hong Xia
A1 - Xiao-ming Wang
A1 - Wei Wei
A1 - Miao Yu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 12
SP - 2046
EP - 2057
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601497


Abstract: 
The DC microgrid is connected to the AC utility by parallel bidirectional power converters (BPCs) to import/export large power, whose control directly affects the performance of the grid-connected DC microgrid. Much work has focused on the hierarchical control of the DC, AC, and hybrid microgrids, but little has considered the hierarchical control of multiple parallel BPCs that directly connect the DC microgrid to the AC utility. In this paper, we propose a hierarchical control for parallel BPCs of a grid-connected DC microgrid. To suppress the potential zero-sequence circulating current in the AC side among the parallel BPCs and realize feedback linearization of the voltage control, a d-q-0 control scheme instead of a conventional d-q control scheme is proposed in the inner current loop, and the square of the DC voltage is adopted in the inner voltage loop. DC side droop control is applied to realize DC current sharing among multiple BPCs at the primary control level, and this induces DC bus voltage deviation. The quantified relationship between the current sharing error and DC voltage deviation is derived, indicating that there is a trade-off between the DC voltage deviation and current sharing error. To eliminate the current sharing error and DC voltage deviation simultaneously, slope-adjusting and voltage-shifting approaches are adopted at the secondary control level. The proposed tertiary control realizes precise active and reactive power exchange through parallel BPCs for economical operation. The proposed hierarchical control is applied for parallel BPCs of a grid-connected DC microgrid and can operate coordinately with the control for controllable/uncontrollable distributional generation. The effectiveness of the proposed control method is verified by corresponding simulation tests based on Matlab/Simulink, and the performance of the hierarchical control is evaluated for practical applications.

联网型直流微电网并联双向变流器分层控制

概要:直流微电网通过多个双向变流器并联连接到交流电网,其控制方法直接影响到直流电网的性能。目前的研究工作主要集中在交流、直流及混合微电网的分层控制,而较少关注直流微电网互联的双向变流器的分层控制。本文提出一种直流微电网联网双向变流器的分层控制方法。为抑制交流测零序环流并实现电压控制的反馈线性化,采用d-q-0控制策略来控制内环电流并采用直流电压平方实现外环电压控制。在一次控制阶段采用直流电压下垂控制来实现直流电流的分担,直流电压下垂控制会产生直流电压偏差。接着分析了直流电压偏差和电流分担误差之间的关系。为同时消除直流电压偏差和电流分担误差,在二次控制中采用了下垂斜率调节和电压平移。三次控制中通过多双向变流器的精确有功和无功控制实现直流微网的经济运行。本文提出的直流微网多并联双向变流器分层控制方法可以实现微网内可控/不可控分布式电源的协调。通过Matlab/Simulink仿真验证了算法的有效性,结果表明该算法能满足实际应用需求。

关键词:并联双向变流器;分层控制;直流微电网

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Anand, S., Fernandes, B.G., Guerrero, J., 2013. Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans. Power Electron., 28(4):1900-1913.

[2]Bao, J.Y., Bao, W.B., Zhang, Z.C., 2010. Generalized multilevel current source inverter topology with self-balancing current. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(7):555-561.

[3]Bao, X.W., Zhuo, F., Tian, Y., et al., 2013. Simplified feedback linearization control of three-phase photovoltaic inverter with an LCL filter. IEEE Trans. Power Electron., 28(6): 2739-2752.

[4]Bidram, A., Davoudi, A., Lewis, F.L., et al., 2013. Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst., 28(3):3462-3470.

[5]Blasko, V., Kaura, V., 1997. A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter. IEEE Trans. Ind. Appl., 33(2):542-550.

[6]Che, L., Shahidehpour, M., Alabdulwahab, A., et al., 2015. Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Trans. Smart Grid, 6(6): 3042-3051.

[7]Chen, T.P., 2012. Zero-sequence circulating current reduction method for parallel HEPWM inverters between AC bus and DC bus. IEEE Trans. Ind. Electron., 59(1):290-300.

[8]Dragičević, T., Lu, X.N., Vasquez, J.C., et al., 2016. DC microgrids-part I: A review of control strategies and stabilization techniques. IEEE Trans. Power Electron., 31(7): 4876-4891.

[9]Eto, J., Lasseter, R., Schenkman, B., et al., 2009. Overview of the CERTS microgrid laboratory test bed. IEEE Trans. Power Del., 26(1):325-332.

[10]Gao, M.Z., Chen, M., Jin, C., et al., 2013. Analysis, design, and experimental evaluation of power calculation in digital droop-controlled parallel microgrid inverters. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(1): 50-64.

[11]Guerrero, J.M., Vasquez, J.C., Matas, J., et al., 2011. Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron., 58(1):158-172.

[12]Guo, T.T., Liu, X.L., Hao, S.Q., et al., 2015. Analysis and design of pulse frequency modulation dielectric barrier discharge for low power applications. Front. Inform. Technol. Electron. Eng., 16(3):249-258.

[13]Khorsandi, A., Ashourloo, M., Mokhtari, H., 2014. A decentralized control method for a low-voltage DC microgrid. IEEE Trans. Energy Conv., 29(4):793-801.

[14]Lasseter, R., Akhil, A., Marnay, C., et al., 2002. Consortium for Electric Reliability Technology Solutions. White Paper on Integration of Distributed Energy Resources. The CERTS MicroGrid Concept, p.1-29.

[15]Lee, T.S., 2003. Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters. IEEE Trans. Power Electron., 18(1):11-22.

[16]Loh, P.C., Li, D., Chai, Y.K., et al., 2013. Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid. IEEE Trans. Ind. Appl., 49(3):1374-1382.

[17]Lu, X.N., Guerrero, J.M., Sun, K., et al., 2014a. Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid, 5(2):683-692.

[18]Lu, X.N., Guerrero, J.M., Sun, K., et al., 2014b. An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy. IEEE Trans. Power Electron., 29(4):1800-1812.

[19]Meng, L.X., Dragicevic, T., Vasquez, J.C., et al., 2015. Tertiary and secondary control levels for efficiency optimization and system damping in droop controlled DC-DC converters. IEEE Trans. Smart Grid, 6(6):2615-2626

[20]Nasirian, V., Davoudi, A., Lewis, F.L., et al., 2014. Distributed adaptive droop control for DC distribution systems. IEEE Trans. Energy Conv., 29(4):944-956.

[21]Nasirian, V., Moayedi, S., Davoudi, A., et al., 2015. Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron., 30(4):2288-2303.

[22]Pan, C.T., Liao, Y.H., 2008. Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing. IEEE Trans. Ind. Electron., 55(7): 2776-2785.

[23]Shafiee, Q., Dragičević, T., Vasquez, J.C., et al., 2014. Hierarchical control for multiple DC-microgrids clusters. IEEE Trans. Energy Conv., 29(4):922-933.

[24]Torreglosa, J.P., García-Triviño, P., Fernández-Ramirez, L.M., et al., 2016. Control strategies for DC networks: a systematic literature review. Renew. Sust. Energy Rev., 58: 319-330.

[25]Unamuno, E., Barrena, J.A., 2015. Hybrid ac/dc micro-grids—Part II: review and classification of control strategies. Renew. Sustain. Energy Rev., 52:1123-1134.

[26]Wang, L.J., Yang, T., Zhang, D.M., et al., 2012. A high performance simulation methodology for multilevel grid-connected inverters. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(7):544-551.

[27]Wang, P.B., Lu, X.N., Yang, X., et al., 2016. An improved distributed secondary control method for DC microgrids with enhanced dynamic current sharing performance. IEEE Trans. Power Electron., 31(9):6658-6673.

[28]Xiao, H.G., Luo, A., Shuai, Z.K., et al., 2016. An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid. IEEE Trans. Smart Grid, 7(1):340-347.

[29]Xiao, J.F., Wang, P., Setyawan, L., 2016. Multilevel energy management system for hybridization of energy storages in DC microgrids. IEEE Trans. Smart Grid, 7(2):847-856.

[30]Xu, L., Chen, D., 2011. Control and operation of a DC microgrid with variable generation and energy storage. IEEE Trans. Power Del., 26(4):2513-2522.

[31]Ye, Z.H., Boroyevich, D., Choi, J.Y., et al., 2002. Control of circulating current in two parallel three-phase boost rectifiers. IEEE Trans. Power Electron., 17(5):609-615.

[32]Zhang, D., Wang, F.F., Burgos, R., et al., 2011. Common-mode circulating current control of paralleled interleaved three-phase two-level voltage-source converters with discontinuous space-vector modulation. IEEE Trans. Power Electron., 26(12):3925-3935.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE