CLC number: TN92
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-05-25
Cited: 1
Clicked: 11689
Jian-zhi Li, Bo Ai, Rui-si He, Qi Wang, Mi Yang, Bei Zhang, Ke Guan, Dan-ping He, Zhang-dui Zhong, Ting Zhou, Nan Li. Indoor massive multiple-input multiple-output channel characterization and performance evaluation[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(6): 773-787.
@article{title="Indoor massive multiple-input multiple-output channel characterization and performance evaluation",
author="Jian-zhi Li, Bo Ai, Rui-si He, Qi Wang, Mi Yang, Bei Zhang, Ke Guan, Dan-ping He, Zhang-dui Zhong, Ting Zhou, Nan Li",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="6",
pages="773-787",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700021"
}
%0 Journal Article
%T Indoor massive multiple-input multiple-output channel characterization and performance evaluation
%A Jian-zhi Li
%A Bo Ai
%A Rui-si He
%A Qi Wang
%A Mi Yang
%A Bei Zhang
%A Ke Guan
%A Dan-ping He
%A Zhang-dui Zhong
%A Ting Zhou
%A Nan Li
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 6
%P 773-787
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700021
TY - JOUR
T1 - Indoor massive multiple-input multiple-output channel characterization and performance evaluation
A1 - Jian-zhi Li
A1 - Bo Ai
A1 - Rui-si He
A1 - Qi Wang
A1 - Mi Yang
A1 - Bei Zhang
A1 - Ke Guan
A1 - Dan-ping He
A1 - Zhang-dui Zhong
A1 - Ting Zhou
A1 - Nan Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 6
SP - 773
EP - 787
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700021
Abstract: We present a measurement campaign to characterize an indoor massive multiple-input multiple-output (MIMO) channel system, using a 64-element virtual linear array, a 64-element virtual planar array, and a 128-element virtual planar array. The array topologies are generated using a 3D mechanical turntable. The measurements are conducted at 2, 4, 6, 11, 15, and 22 GHz, with a large bandwidth of 200 MHz. Both line-of-sight (LOS) and non-LOS (NLOS) propagation scenarios are considered. The typical channel parameters are extracted, including path loss, shadow fading, power delay profile, and root mean square (RMS) delay spread. The frequency dependence of these channel parameters is analyzed. The correlation between shadow fading and RMS delay spread is discussed. In addition, the performance of the standard linear precoder–-the matched filter, which can be used for intersymbol interference (ISI) mitigation by shortening the RMS delay spread, is investigated. Other performance measures, such as entropy capacity, Demmel condition number, and channel ellipticity, are analyzed. The measured channels, which are in a rich-scattering indoor environment, are found to achieve a performance close to that in independent and identically distributed Rayleigh channels even in an LOS scenario.
[1]Ai, B., Cheng, X., Kürner, T., et al., 2014. Challenges toward wireless communications for high-speed railway. IEEE Trans. Intell. Transp. Syst., 15(5):2143-2158.
[2]Ai, B., Guan, K., Rupp, M., et al., 2015. Future railway services-oriented mobile communications network. IEEE Commun. Mag., 53(10):78-85.
[3]Ai, B., Guan, K., He, R.S., et al., 2017. On indoor millimeter wave massive MIMO channels: measurement and simulation. IEEE J. Sel. Areas Commun., 99:1-17.
[4]Andrews, J.G., Buzzi, S., Choi, W., et al., 2014. What will 5G be? IEEE J. Sel. Areas Commun., 32(6):1065-1082.
[5]Astely, D., Dahlman, E., Furuskär, A., et al., 2009. LTE: the evolution of mobile broadband. IEEE Commun. Mag., 47(4):44-51.
[6]Boccardi, F., Heath, R.W., Lozano, A., et al., 2014. Five disruptive technology directions for 5G. IEEE Commun. Mag., 52(2):74-80.
[7]Cai, Y., de Lamare, R.C., Champagne, B., et al., 2015. Adaptive reduced-rank receive processing based on minimum symbol-error-rate criterion for large-scale multiple-antenna systems. IEEE Trans. Commun., 63(11):4185-4201.
[8]Demmel, J.W., 1988. The probability that a numerical analysis problem is difficult. Math. Comput., 50(182):449-480.
[9]Feuerstein, M.J., Blackard, K.L., Rappaport, T.S., et al., 1994. Path loss, delay spread, and outage models as functions of antenna height for microcellular system design. IEEE Trans. Veh. Technol., 43(3):487-498.
[10]Flordelis, J., Gao, X., Dahman, G., et al., 2015. Spatial separation of closely-spaced users in measured massive multi-user MIMO channels. IEEE Int. Conf. on Communications, p.1441-1446.
[11]Gao, L., Zhong, Z., Ai, B., et al., 2010. Estimation of the Ricean $K$ factor in the high speed railway scenarios. 5th Int. Conf. on Communications and Networking in China, p.1-5.
[12]Gao, X., Tufvesson, F., Edfors, O., et al., 2012. Measured propagation characteristics for very-large MIMO at 2.6 GHz. 46th Asilomar Conf. on Signals, Systems and Computers, p.295-299.
[13]Gao, X., Edfors, O., Rusek, F., et al., 2015. Massive MIMO performance evaluation based on measured propagation data. IEEE Trans. Wirel. Commun., 14(7):3899-3911.
[14]Greenstein, L.J., Erceg, V., Yeh, Y.S., et al., 1997. A new path-gain/delay-spread propagation model for digital cellular channels. IEEE Trans. Veh. Technol., 46(2):477-485.
[15]Guan, K., Zhong, Z., Ai, B., et al., 2013a. Deterministic propagation modeling for the realistic high-speed railway environment. IEEE 77th Vehicular Technology Conf., p.1-5.
[16]Guan, K., Zhong, Z., Ai, B., et al., 2013b. Modeling of the division point of different propagation mechanisms in the near-region within arched tunnels. Wirel. Pers. Commun., 68(3):489-505.
[17]Guan, K., Zhong, Z., Ai, B., et al., 2014a. Propagation measurements and analysis for train stations of high-speed railway at 930 MHz. IEEE Trans. Veh. Technol., 63(8):3499-3516.
[18]Guan, K., Zhong, Z., Ai, B., et al., 2014b. Propagation measurements and modeling of crossing bridges on high-speed railway at 930 MHz. IEEE Trans. Veh. Technol., 63(2):502-517.
[19]Guan, K., Ai, B., Nicolás, M.L., et al., 2016. On the influence of scattering from traffic signs in vehicle-to-$x$ communications. IEEE Trans. Veh. Technol., 65(8):5835-5849.
[20]He, R., Zhong, Z., Ai, B., et al., 2011. An empirical path loss model and fading analysis for high-speed railway viaduct scenarios. IEEE Antennas Wirel. Propag. Lett., 10:808-812.
[21]He, R., Zhong, Z., Ai, B., et al., 2012a. Analysis of the relation between Fresnel zone and path loss exponent based on two-ray model. IEEE Antennas Wirel. Propag. Lett., 11:208-211.
[22]He, R., Zhong, Z., Ai, B., et al., 2012b. Measurements and analysis of short-term fading behavior for high-speed rail viaduct scenario. IEEE Int. Conf. on Communications, p.4563-4567.
[23]He, R., Zhong, Z., Ai, B., et al., 2013. Measurements and analysis of propagation channels in high-speed railway viaducts. IEEE Trans. Wirel. Commun., 12(2):794-805.
[24]He, R., Molisch, A.F., Tufvesson, F., et al., 2014. Vehicle-to-vehicle propagation models with large vehicle obstructions. IEEE Trans. Intell. Transp. Syst., 15(5):2237-2248.
[25]He, R., Renaudin, O., Kolmonen, V.M., et al., 2015a. Characterization of quasi-stationarity regions for vehicle-to-vehicle radio channels. IEEE Trans. Antennas Propag., 63(5):2237-2251.
[26]He, R., Zhong, Z., Ai, B., et al., 2015b. Shadow fading correlation in high-speed railway environments. IEEE Trans. Veh. Technol., 64(7):2762-2772.
[27]He, R., Ai, B., Wang, G., et al., 2016a. High-speed railway communications: from GSM-R to LTE-R. IEEE Veh. Technol. Mag., 11(3):49-58.
[28]He, R., Chen, W., Ai, B., et al., 2016b. On the clustering of radio channel impulse responses using sparsity-based methods. IEEE Trans. Antennas Propag., 64(6):2465-2474.
[29]Heath, R.W., Paulraj, A.J., 2005. Switching between diversity and multiplexing in MIMO systems. IEEE Trans. Commun., 53(6):962-968.
[30]Hoydis, J., Hoek, C., Wild, T., et al., 2012. Channel measurements for large antenna arrays. Int. Symp. on Wireless Communication Systems, p.811-815.
[31]Janssen, G.J.M., Stigter, P.A., Prasad, R., 1996. Wideband indoor channel measurements and BER analysis of frequency selective multipath channels at 2.4, 4.75, and 11.5 GHz. IEEE Trans. Commun., 44(10):1272-1288.
[32]Jungnickel, V., Jaeckel, S., Thiele, L., et al., 2009. Capacity measurements in a cooperative MIMO network. IEEE Trans. Veh. Technol., 58(5):2392-2405.
[33]Larsson, E.G., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2):186-195.
[34]Li, J., Ai, B., He, R., et al., 2016. Measurement-based characterizations of indoor massive MIMO channels at 2 GHz, 4 GHz, and 6 GHz frequency bands. IEEE 83rd Vehicular Technology Conf., p.1-5.
[35]Liu, L., Li, Y., Zhang, J., 2014. DoA estimation and achievable rate analysis for 3D millimeter wave massive MIMO systems. IEEE 15th Int. Workshop on Signal Processing Advances in Wireless Communications, p.6-10.
[36]Molisch, A.F., 2011. Wireless Communications. Wiley-IEEE Press, Hoboken, USA.
[37]Molisch, A.F., Steinbauer, M., 1999. Condensed parameters for characterizing wideband mobile radio channels. Int. J. Wirel. Inform. Netw., 6(3):133-154.
[38]Ng, B.L., Kim, Y., Lee, J., et al., 2012. Fulfilling the promise of massive MIMO with 2D active antenna array. IEEE Globecom Workshops, p.691-696.
[39]Ngo, H.Q., Larsson, E.G., Marzetta, T.L., 2013. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun., 61(4):1436-1449.
[40]Payami, S., Tufvesson, F., 2012. Channel measurements and analysis for very large array systems at 2.6 GHz. 6th European Conf. on Antennas and Propagation, p.433-437.
[41]Payami, S., Tufvesson, F., 2013. Delay spread properties in a measured massive MIMO system at 2.6 GHz. IEEE 24th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications, p.53-57.
[42]Poon, A.S.Y., Ho, M., 2003. Indoor multiple-antenna channel characterization from 2 to 8 GHz. IEEE Int. Conf. on Communications, p.3519-3523.
[43]Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag., 30(1):40-60.
[44]Salo, J., Suvikunnas, P., El-Sallabi, H.M., et al., 2006. Ellipticity statistic as measure of MIMO multipath richness. Electron. Lett., 42(3):160-162.
[45]Salous, S., Gokalp, H., 2007. Medium- and large-scale characterization of UMTS-allocated frequency division duplex channels. IEEE Trans. Veh. Technol., 56(5):2831-2843.
[46]Wang, C.X., Haider, F., Gao, X., et al., 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag., 52(2):122-130.
[47]Wei, H., Zhong, Z., Xiong, L., et al., 2011. Study on the shadow fading characteristic in viaduct scenario of the high-speed railway. 6th Int. Conf. on Communications and Networking in China, p.1216-1220.
[48]Wu, S., Wang, C.X., Haas, H., et al., 2015. A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wirel. Commun., 14(3):1434-1446.
Open peer comments: Debate/Discuss/Question/Opinion
<1>