Full Text:   <8679>

Summary:  <1654>

CLC number: Q248; O438.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-03-03

Cited: 0

Clicked: 6060

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chen-lei Pang

https://orcid.org/0000-0002-3167-9090

Qing Yang

https://orcid.org/0000-0001-5324-4832

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.8 P.1134-1149

http://doi.org/10.1631/FITEE.1900211


Chip-based waveguides for high-sensitivity biosensing and super-resolution imaging


Author(s):  Chen-lei Pang, Xu Liu, Wei Chen, Qing Yang

Affiliation(s):  State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   qingyang@zju.edu.cn

Key Words:  Waveguide-based sensing, Waveguide-based imaging, Evanescent illumination, Frequency shifting and stitching


Chen-lei Pang, Xu Liu, Wei Chen, Qing Yang. Chip-based waveguides for high-sensitivity biosensing and super-resolution imaging[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(8): 1134-1149.

@article{title="Chip-based waveguides for high-sensitivity biosensing and super-resolution imaging",
author="Chen-lei Pang, Xu Liu, Wei Chen, Qing Yang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="8",
pages="1134-1149",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900211"
}

%0 Journal Article
%T Chip-based waveguides for high-sensitivity biosensing and super-resolution imaging
%A Chen-lei Pang
%A Xu Liu
%A Wei Chen
%A Qing Yang
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 8
%P 1134-1149
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900211

TY - JOUR
T1 - Chip-based waveguides for high-sensitivity biosensing and super-resolution imaging
A1 - Chen-lei Pang
A1 - Xu Liu
A1 - Wei Chen
A1 - Qing Yang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 8
SP - 1134
EP - 1149
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900211


Abstract: 
In this review, we introduce some chip-based waveguide biosensing and imaging techniques, which significantly reduce the complexity of the entire system. These techniques use a well-confined evanescent field to interact with the surrounding materials and achieve high sensitivity sensing and high signal-to-noise ratio (SNR) super-resolution imaging. The fabrication process of these chips is simple and compatible with conventional semiconductor fabrication methods, allowing high-yield production. Combined with recently developed chip-based light sources, these techniques offer the possibility of biosensing and super-resolution imaging based on integrated circuits.

基于片上波导的超灵敏探测与超分辨成像

庞陈雷1,刘旭1,陈伟2,3,杨青1,4
1浙江大学光电科学与工程学院现代光学仪器国家重点实验室,中国杭州市,310027
2浙江大学医学院细胞生物学系,中国杭州市,310058
3浙江大学现代光学仪器国家重点实验室,感染性疾病诊治协同创新中心,中国杭州市,310058
4山西大学极端光学协同创新中心,中国太原市,030006

摘要:本综述介绍基于芯片的波导生物传感和成像技术的最新研究进展,这些技术可显著降低系统复杂度。这些技术利用波导表面的近场倏逝场与周围样品产生相互作用,实现对被检测生物分子的高灵敏探测和微纳样品的高信噪比超分辨成像。相关检测与成像波导芯片的制作过程简单,且同传统半导体加工工艺兼容,具有大规模生产应用前景。通过与近年来快速发展的片上集成光源结合,这些技术为实现片上系统集成的生物分子检测和超分辨成像提供了可能。

关键词:波导探测;波导成像;倏逝场照明;移频与频谱拼接

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abbe E, 1873. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch f Mikrosk Anat, 9(1):413-418 (in German).

[2]Agnarsson B, Ingthorsson S, Gudjonsson T, et al., 2009. Evanescent-wave fluorescence microscopy using symmetric planar waveguides. Opt Expr, 17(7):5075-5082.

[3]Agnarsson B, Lundgren A, Gunnarsson A, et al., 2015. Evanescent light-scattering microscopy for label-free interfacial imaging: from single sub-100 nm vesicles to live cells. ACS Nano, 9(12):11849-11862.

[4]Armani AM, Vahala KJ, 2006. Heavy water detection using ultra-high-Q microcavities. Opt Lett, 31(23):1896-1898.

[5]Axelrod D, 2001. Total internal reflection fluorescence microscopy in cell biology. Traffic, 2(11):764-774.

[6]Axelrod D, Thompson NL, Burghardt TP, 1983. Total internal reflection fluorescent microscopy. J Microsc-Oxford, 129(1):19-28.

[7]Bates M, Huang B, Dempsey GT, et al., 2007. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science, 317(5845):1749-1753.

[8]Betzig E, Trautman JK, 1992. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 257(5067):189-195.

[9]Betzig E, Patterson GH, Sougrat R, et al., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642-1645.

[10]Brandenburg A, 1997. Differential refractometry by an integrated-optical Young interferometer. Sens Actuat B Chem, 39(1-3):266-271.

[11]Brandenburg A, Henninger R, 1994. Integrated optical Young interferometer. Appl Opt, 33(25):5941-5947.

[12]Chao CY, Fung W, Guo LJ, 2006. Polymer microring resonators for biochemical sensing applications. IEEE J Sel Top Quant, 12(1):134-142.

[13]Chung JW, Bernhardt R, Pyun JC, 2006. Additive assay of cancer marker CA 19-9 by SPR biosensor. Sens Actuat B Chem, 118(1-2):28-32.

[14]Coskun AF, Wong J, Khodadadi D, et al., 2013. A personalized food allergen testing platform on a cellphone. Lab Chip, 13(4):636-640.

[15]Cross GH, Ren YT, Freeman NJ, 1999. Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing. J Appl Phys, 86(11):6483-6488.

[16]Cross GH, Reeves AA, Brand S, et al., 2003. A new quantitative optical biosensor for protein characterisation. Biosens Bioelectron, 19(4):383-390.

[17]Cush R, Cronin JM, Stewart WJ, et al., 1993. The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: principle of operation and associated instrumentation. Biosens Bioelectron, 8(7-8):347-354.

[18]Darafsheh A, Walsh GF, Dal Negro L, et al., 2012. Optical super-resolution by high-index liquid-immersed microspheres. Appl Phys Lett, 101(14):141128.

[19]de Vos K, Bartolozzi I, Schacht E, et al., 2007. Silicon-on- insulator microring resonator for sensitive and label-free biosensing. Opt Expr, 15(12):7610-7615.

[20]Diekmann R, Helle ØI, Øie CI, et al., 2017. Chip-based wide field-of-view nanoscopy. Nat Photon, 11(5):322-328.

[21]Fan XD, White IM, Shopova S, et al., 2008. Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta, 620(1-2):8-26.

[22]Flueckiger J, Schmidt S, Donzella V, et al., 2016. Sub- wavelength grating for enhanced ring resonator biosensor. Opt Expr, 24(14):15672-15686.

[23]Goddard NJ, Pollard-Knight D, Maule CH, 1994. Real-time biomolecular interaction analysis using the resonant mirror sensor. Analyst, 119(4):583-588.

[24]Goddard NJ, Singh K, Hulme JP, et al., 2002. Internally- referenced resonant mirror devices for dispersion compensation in chemical sensing and biosensing applications. Sens Actuat A, 100(1):1-9.

[25]Graham CR, Leslie D, Squirrell DJ, 1992. Gene probe assays on a fibre-optic evanescent wave biosensor. Biosens Bioelectron, 7(7):487-493.

[26]Grandin HM, Städler B, Textor M, et al., 2006. Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. Biosens Bioelectron, 21(8):1476-1482.

[27]Guner H, Ozgur E, Kokturk G, et al., 2019. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens Actuat B Chem, 239:571-577.

[28]Gustafsson MGL, 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA, 102(37):13081-13086.

[29]Gustafsson MGL, Shao L, Carlton PM, et al., 2008. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J, 94(12):4957-4970.

[30]Hanumegowda NM, White IM, Oveys H, et al., 2005. Label- free protease sensors based on optical microsphere resonators. Sens Lett, 3(4):315-319.

[31]Hao X, Kuang CF, Liu X, et al., 2011. Microsphere based microscope with optical super-resolution capability. Appl Phys Lett, 99(20):203102.

[32]Hao X, Liu X, Kuang CF, et al., 2013. Far-field super- resolution imaging using near-field illumination by micro-fiber. Appl Phys Lett, 102(1):013104.

[33]Hassanzadeh A, Nitsche M, Mittler S, et al., 2008. Waveguide evanescent field fluorescence microscopy: thin film fluorescence intensities and its application in cell biology. Appl Phys Lett, 92(23):233503.

[34]Hastings JT, Guo J, Keathley PD, et al., 2007. Optimal self-referenced sensing using long- and short-range surface plasmons. Opt Expr, 15(26):17661-17672.

[35]Hecht B, Sick B, Wild UP, et al., 2000. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J Chem Phys, 12(18):7761-7774.

[36]Heideman RG, Kooyman RPH, Greve J, et al., 1991. Simple interferometer for evanescent field refractive index sensing as a feasibility study for an immunosensor. Appl Opt, 30(12):1474-1479.

[37]Heideman RG, Kooyman RPH, Greve J, 1993. Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor. Sens Actuat B Chem, 10(3):209-217.

[38]Hess ST, Girirajan TPK, Mason MD, 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J, 91(11):4258-4272.

[39]Hoa XD, Kirk AG, Tabrizian M, 2007. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron, 23(2):151-160.

[40]Homola J, Yee SS, Gauglitz G, 1999. Surface plasmon resonance sensors. Sens Actuat B Chem, 54(1-2):3-15.

[41]Horváth R, Lindvold LR, Larsen NB, 2002. Reverse- symmetry waveguides: theory and fabrication. Appl Phys B, 74(4-5):383-393.

[42]Horváth R, Pedersen HC, Skivesen N, et al., 2003. Optical waveguide sensor for on-line monitoring of bacteria. Opt Lett, 28(14):1233-1235.

[43]Horváth R, Pedersen HC, Skivesen N, et al., 2005. Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing. Appl Phys Lett, 86(7): 071101.

[44]Jiménez D, Bartolomé E, Moreno M, et al., 1996. An integrated silicon ARROW Mach–Zehnder interferometer for sensing applications. Opt Commun, 132(5-6):437-441.

[45]Kim J, Song KB, 2007. Recent progress of nano-technology with NSOM. Micron, 38(4):409-426.

[46]Kim J, Shin Y, Perera AP, et al., 2013. Label-free, PCR-free chip-based detection of telomerase activity in bladder cancer cells. Biosens Bioelectron, 45:152-157.

[47]Klar TA, Engel E, Hell SW, 2001. Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys Rev E Stat Nonl Soft Matter Phys, 64(6):066613.

[48]Krioukov E, Greve J, Otto C, 2003. Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sens Actuat B Chem, 90(1-3):58-67.

[49]Ksendzov A, Lin Y, 2005. Integrated optics ring-resonator sensors for protein detection. Opt Lett, 30(24):3344-3346.

[50]Lee D, Kim YD, Kim M, et al., 2017. Realization of wafer- scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photon, 5(7):2549-2554.

[51]Liedberg B, Nylander C, Lunström I, 1983. Surface plasmon resonance for gas detection and biosensing. Sens Actuat, 4(2):299-304.

[52]Lillehoj PB, Huang MC, Truong N, et al., 2013. Rapid electrochemical detection on a mobile phone. Lab Chip, 13(15):2950-2955.

[53]Lin SY, Crozier KB, 2013. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities. ACS Nano, 7(2):1720-1730.

[54]Lin VSY, Motesharei K, Dancil KPS, et al., 1997. A porous silicon-based optical interferometric biosensor. Science, 278(5339):840-843.

[55]Liu Q, Tu XG, Woo KK, et al., 2013. Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens Actuat B Chem, 188:681-688.

[56]Liu XW, Kuang CF, Hao X, et al., 2017. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys Rev Lett, 118(7):076101.

[57]Liu ZW, Lee H, Xiong Y, et al., 2007. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315(5819):1686.

[58]Ma DDD, Lee CS, Au FCK, et al., 2003. Small-diameter silicon nanowire surfaces. Science, 299(5614):1874-1877.

[59]Millan KM, Saraullo A, Mikkelsen SR, 1994. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem, 66(18):2943-2948.

[60]Moerner WE, 2007. New directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA, 104(31):12596-12602.

[61]Nikitin PI, Grigorenko AN, Beloglazov AA, et al., 2000. Surface plasmon resonance interferometry for micro- array biosensing. Sens Actuat A, 85(1-3):189-193.

[62]Noto M, Khoshsima M, Keng D, et al., 2005. Molecular weight dependence of a whispering gallery mode biosensor. Appl Phys Lett, 87(22):223901.

[63]Pang CL, Liu XW, Zhuge MH, et al., 2017. High-contrast wide-field evanescent wave illuminated subdiffraction imaging. Opt Lett, 42(21):4569-4572.

[64]Pang CL, Li JX, Tang MW, et al., 2019. On-chip super- resolution imaging with fluorescent polymer films. Adv Funct Mat, 29(27):1900126.

[65]Prakash PA, Yogeswaran U, Chen SM, 2009. A review on direct electrochemistry of catalase for electrochemical sensors. Sensors, 9(3):1821-1844.

[66]Prieto F, Sepúlveda B, Calle A, et al., 2003. Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications. Sens Actuat B Chem, 92(1-2):151-158.

[67]Ramachandran S, Cohen DA, Quist AP, et al., 2013. High performance, LED powered, waveguide based total internal reflection microscopy. Sci Rep, 3:2133.

[68]Rho J, Ye ZL, Xiong Y, et al., 2010. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun, 1:143.

[69]Roda A, Michelini E, Zangheri M, et al., 2016. Smartphone-based biosensors: a critical review and perspectives. Trends Anal Chem, 79:317-325.

[70]Rotenberg N, Kuipers L, 2014. Mapping nanoscale light fields. Nat Photon, 8(12):919-926.

[71]Schermelleh L, Heintzmann R, Leonhardt H, 2010. A guide to super-resolution fluorescence microscopy. J Cell Biol, 190(2):165-175.

[72]Schipper EF, Brugman AM, Dominguez C, et al., 1997. The realization of an integrated Mach–Zehnder waveguide immunosensor in silicon technology. Sens Actuat B Chem, 40(2-3):147-153.

[73]Schneider BH, Edwards JG, Hartman NF, 1997. Hartman interferometer: versatile integrated optic sensor for label- free, real-time quantification of nucleic acids, proteins, and pathogens. Clin Chem, 43(9):1757-1763.

[74]Schneider BH, Dickinson EL, Vach MD, et al., 2000. Highly sensitive optical chip immunoassays in human serum. Biosens Bioelectron, 15(1-2):13-22.

[75]Schweinsberg A, Hocdé S, Lepeshkin N, et al., 2007. An environmental sensor based on an integrated optical whispering gallery mode disk resonator. Sens Actuat B Chem, 123(2):727-732.

[76]Serpengüzel A, Arnold S, Griffel G, 1995. Excitation of resonances of microspheres on an optical fiber. Opt Lett, 20(7):654-656.

[77]Skivesen N, Horvath R, Pedersen HC, 2003. Multimode reverse-symmetry waveguide sensor for broad-range refractometry. Opt Lett, 28(24):2473-2475.

[78]Skivesen N, Horvath R, Pedersen HC, 2005. Optimization of metal-clad waveguide sensors. Sens Actuat B Chem, 106(2):668-676.

[79]Skivesen N, Horvath R, Thinggaard S, et al., 2007. Deep-probe metal-clad waveguide biosensors. Biosens Bioelectron, 22(7):1282-1288.

[80]Su H, Kallury KMR, Thompson M, et al., 1994. Interfacial nucleic acid hybridization studied by random primer 32P labeling and liquid-phase acoustic network analysis. Anal Chem, 66(6):769-777.

[81]Sun JB, Shalaev MI, Litchinitser NM, 2015. Experimental demonstration of a non-resonant hyperlens in the visible spectral range. Nat Commun, 6:7201.

[82]Sundram V, Nanda JS, Rajagopal K, et al., 1993. Domain truncation studies reveal that the streptokinase-plasmin activator complex utilizes long range protein-protein interactions with macromolecular substrate to maximize catalytic turnover. J Biol Chem, 278(33):30569-30577.

[83]Suter JD, White IM, Zhu HY, et al., 2007. Thermal characterization of liquid core optical ring resonator sensors. Appl Opt, 46(3):386-389.

[84]Taniguchi T, Hirowatari A, Ikeda T, et al., 2016. Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G. Opt Commun, 365:16-23.

[85]Teraoka I, Arnold S, 2006. Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications. J Opt Soc Am B, 23(7): 1381-1389.

[86]Tian BZ, Cohen-Karni T, Qing Q, et al., 2010. Three- dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science, 329(5993):830-834.

[87]Tiefenthaler K, Lukosz W, 1989. Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B, 6(2):209-220.

[88]Tong L, Gattass RR, Ashcom JB, et al., 2003. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 426(6968):816-819.

[89]Wang ZB, Guo W, Li L, et al., 2011. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun, 2:218.

[90]Watts HJ, Lowe CR, Pollard-Knight DV, 1994. Optical biosensor for monitoring microbial cells. Anal Chem, 66(15):2465-2470.

[91]Watts HJ, Yeung D, Partees H, 1995. Real-time detection and quantification of DNA hybridization by an optical biosensor. Anal Chem, 67(23):4283-4289.

[92]Weisser M, Tovar G, Mittler-Neher S, et al., 1999. Specific bio-recognition reactions observed with an integrated Mach–Zehnder interferometer. Biosens Bioelectron, 14(4):405-411.

[93]White IM, Fan XD, 2008. On the performance quantification of resonant refractive index sensors. Opt Expr, 16(2): 1020-1028.

[94]White IM, Gohring J, Fan XD, 2007. SERS-based detection in an optofluidic ring resonator platform. Opt Expr, 15(25):17433-17442.

[95]Willig KI, Rizzoli SO, Westphal V, et al., 2006. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440(7086): 935-939.

[96]Yahiatène I, Hennig S, Müller M, et al., 2015. Entropy-based super-resolution imaging (ESI): from disorder to fine detail. ACS Photon, 2(8):1049-1056.

[97]Yalcin A, Popat KC, Aldridge JC, et al., 2006. Optical sensing of biomolecules using microring resonators. IEEE J Sel Top Quant, 12(1):148-155.

[98]Yang Q, Wang WH, Xu S, et al., 2011. Enhancing light emission of ZnO microwire-based diodes by piezo- phototronic effect. Nano Lett, 11(9):4012-4017.

[99]Ymeti A, Kanger JS, Greve J, et al., 2003. Realization of a multichannel integrated Young interferometer chemical sensor. Appl Opt, 42(28):5649-5660.

[100]Yu L, Shi ZZ, Fang C, et al., 2015. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron, 69:307-315.

[101]Zenhausern F, Martin Y, Wickramasinghe HK, 1995. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science, 269(5227): 1083-1085.

[102]Zhang JJ, Li GX, 2004. Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci, 20(4):603-609.

[103]Zhang JL, Khan I, Zhang QW, et al., 2018. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens Bioelectron, 99:312-317.

[104]Zhu HY, Suter JD, White I, et al., 2006. Aptamer based microsphere biosensor for thrombin detection. Sensors, 6(8):785-795.

[105]Zourob M, Goddard NJ, 2005. Metal clad leaky waveguides for chemical and biosensing applications. Biosens Bioelectron, 20(9):1718-1727.

[106]Zourob M, Mohr S, Brown BJ, et al., 2003a. The development of a metal clad leaky waveguide sensor for the detection of particles. Sens Actuat B Chem, 90:296-307.

[107]Zourob M, Mohr S, Fielden PR, et al., 2003b. Small-volume refractive index and fluorescence sensor for micro total analytical system (μ-TAS) applications. Sens Actuat B Chem, 94:304-312.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE