CLC number: X831; TP212
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-07-24
Cited: 0
Clicked: 1393
Yuanyang XUN, Siqi LI, Feiyu ZHANG, Yan HONG, Ke XU, Ligang CHEN, Song LIU, Bin LI. Rational design of semiconductor metal oxide nanomaterials for gas sensing by template-assisted synthesis: a survey[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(7): 945-963.
@article{title="Rational design of semiconductor metal oxide nanomaterials for gas sensing by template-assisted synthesis: a survey",
author="Yuanyang XUN, Siqi LI, Feiyu ZHANG, Yan HONG, Ke XU, Ligang CHEN, Song LIU, Bin LI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="7",
pages="945-963",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200552"
}
%0 Journal Article
%T Rational design of semiconductor metal oxide nanomaterials for gas sensing by template-assisted synthesis: a survey
%A Yuanyang XUN
%A Siqi LI
%A Feiyu ZHANG
%A Yan HONG
%A Ke XU
%A Ligang CHEN
%A Song LIU
%A Bin LI
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 7
%P 945-963
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200552
TY - JOUR
T1 - Rational design of semiconductor metal oxide nanomaterials for gas sensing by template-assisted synthesis: a survey
A1 - Yuanyang XUN
A1 - Siqi LI
A1 - Feiyu ZHANG
A1 - Yan HONG
A1 - Ke XU
A1 - Ligang CHEN
A1 - Song LIU
A1 - Bin LI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 7
SP - 945
EP - 963
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200552
Abstract: gas sensors have received extensive attention because of the gas pollution caused by rapid construction of urbanization and industrialization. gas sensors based on semiconductor metal oxide (SMO) have the advantages of high response, excellent repeatability, stability, and cost-effectiveness, and have become extremely important components in the gas sensor field. Materials with regular structures and controllable morphology exhibit more consistent and repeatable performance. However, during the process of material synthesis, because of the uncontrollability of the microcosm, nanomaterials often show irregularities, unevenness, and other shortcomings. Thus, the synthesis of gas sensors with well-aligned one-dimensional (1D) structures, two-dimensional (2D) layered structures, and three-dimensional (3D) hierarchical structures has received extensive attention. To obtain regular structured nanomaterials with desired morphologies and dimensions, a template-assisted synthesis method with low cost and controllable process seems a very efficient strategy. In this review, we introduce the morphology and performance of SMO sensors with 1D, 2D, and 3D structures, discuss the impact of a variety of morphologies on gas sensor performance (response and stability), and shed new light on the synthesis of gas sensing materials with stable structure and excellent performance.
[1]Baek DH, Choi J, Kim J, 2019. Fabrication of suspended nanowires for highly sensitive gas sensing. Sens Actuat B Chem, 284:362-368.
[2]Bulemo PM, Cho HJ, Kim DH, et al., 2018. Facile synthesis of Pt-functionalized meso/macroporous SnO2 hollow spheres through in situ templating with SiO2 for H2S sensors. ACS Appl Mater Interfaces, 10(21):18183-18191.
[3]Chen J, Feng DL, Wang C, et al., 2020. Gas sensor detecting 3-hydroxy-2-butanone biomarkers: boosted response via decorating Pd nanoparticles onto the {010} facets of BiVO4 decahedrons. ACS Sens, 5(8):2620-2627.
[4]Cheng PF, Lv L, Wang YL, et al., 2021. SnO2/ZnSnO3 double-shelled hollow microspheres based high-performance acetone gas sensor. Sens Actuat B Chem, 332:129212.
[5]Escobedo P, Fernández-Ramos MD, López-Ruiz N, et al., 2022. Smart facemask for wireless CO2 monitoring. Nat Commun, 13(1):72.
[6]Fei HF, Long YD, Yu HJ, et al., 2020. Bimodal mesoporous carbon spheres with small and ultra-large pores fabricated using amphiphilic brush block copolymer micelle templates. ACS Appl Mater Interfaces, 12(51):57322-57329.
[7]Gao ZM, Wang TQ, Li XF, et al., 2020. Pd-decorated PdO hollow shells: a H2-sensing system in which catalyst nanoparticle and semiconductor support are interconvertible. ACS Appl Mater Interfaces, 12(38):42971-42981.
[8]Giampiccolo A, Tobaldi DM, Leonardi SG, et al., 2019. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl Catal B Environ, 243:183-194.
[9]Guo LL, Zhang B, Yang XL, et al., 2021. Sensing platform of PdO-ZnO-In2O3 nanofibers using MOF templated catalysts for triethylamine detection. Sens Actuat B Chem, 343:130126.
[10]Hong SH, Song N, Jiang EH, et al., 2022. Nickel supported on nitrogen-doped biomass carbon fiber fabricated via in-situ template technology for pH-universal electrocatalytic hydrogen evolution. J Colloid Interface Sci, 608:1441-1448.
[11]Hu CH, Yu LM, Li SL, et al., 2022. Sacrificial template triggered to synthesize hollow nanosheet-assembled Co3O4 microtubes for fast triethylamine detection. Sens Actuat B Chem, 355:131246.
[12]Huang R, Zhu AM, Gong Y, et al., 2013. Facile method to prepare monodispersed hollow PtAu sphere with TiO2 colloidal sphere as a template. Ind Eng Chem Res, 52(22):7432-7438.
[13]Hung PS, Chou YS, Huang BH, et al., 2020. A vertically integrated ZnO-based hydrogen sensor with hierarchical bi-layered inverse opals. Sens Actuat B Chem, 325:128779.
[14]Ivanova A, Frka-Petesic B, Paul A, et al., 2020. Cellulose nanocrystal-templated tin dioxide thin films for gas sensing. ACS Appl Mater Interfaces, 12(11):12639-12647.
[15]Jang JS, Koo WT, Choi SJ, et al., 2017. Metal organic framework-templated chemiresistor: sensing type transition from P-to-N using hollow metal oxide polyhedron via galvanic replacement. J Am Chem Soc, 139(34):11868-11876.
[16]Jo YK, Jeong SY, Moon YK, et al., 2021. Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat Commun, 12(1):4955.
[17]Kim DH, Kim SJ, Shin H, et al., 2019. High-resolution, fast, and shape-conformable hydrogen sensor platform: polymer nanofiber yarn coupled with nanograined Pd@Pt. ACS Nano, 13(5):6071-6082.
[18]Kim DH, Cha JH, Lim JY, et al., 2020. Colorimetric dye-loaded nanofiber yarn: eye-readable and weavable gas sensing platform. ACS Nano, 14(12):16907-16918.
[19]Kim S, Singh G, Oh M, et al., 2021. An analysis of a highly sensitive and selective hydrogen gas sensor based on a 3D Cu-doped SnO2 sensing material by efficient electronic sensor interface. ACS Sens, 6(11):4145-4155.
[20]Koo WT, Cha JH, Jung JW, et al., 2018. Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv Funct Mater, 28(36):1802575.
[21]Li C, Qiao XK, Jian J, et al., 2019. Ordered porous BiVO4 based gas sensors with high selectivity and fast-response towards H2S. Chem Eng J, 375:121924.
[22]Li HJ, Zhang N, Zhao XL, et al., 2020. Modulation of TEA and methanol gas sensing by ion-exchange based on a sacrificial template 3D diamond-shaped MOF. Sens Actuat B Chem, 315:128136.
[23]Li L, Tan JF, Dun MH, et al., 2017. Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens Actuat B Chem, 248:85-91.
[24]Li Q, Wu JB, Huang L, et al., 2018. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. J Mater Chem A, 6(25):12115-12124.
[25]Li RF, Qi H, Ma Y, et al., 2020. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat Commun, 11(1):3207.
[26]Li Z, Zhang Y, Zhang H, et al., 2020. Superior NO2 sensing of MOF-derived indium-doped ZnO porous hollow cages. ACS Appl Mater Interfaces, 12(33):37489-37498.
[27]Li Z, Zhang Y, Zhang H, et al., 2021. MOF-derived Au-loaded Co3O4 porous hollow nanocages for acetone detection. Sens Actuat B Chem, 344:130182.
[28]Liang ZB, Qu C, Zhou WY, et al., 2019. Synergistic effect of Co-Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage. Adv Sci, 6(8):1802005.
[29]Lin LS, Yang XY, Zhou ZJ, et al., 2017. Yolk-shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform. Adv Mater, 29(21):1606681.
[30]Liu W, Xu L, Sheng K, et al., 2018. A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. NPG Asia Mater, 10(4):293-308.
[31]Liu WX, Sun JB, Li YN, et al., 2023. Low-temperature and high-selectivity butanone sensor based on porous Fe2O3 nanosheets synthesized by phoenix tree leaf template. Sens Actuat B Chem, 377:133054.
[32]Liu XJ, Duan XP, Zhang C, et al., 2022. Improvement toluene detection of gas sensors based on flower-like porous indium oxide nanosheets. J Alloys Compd, 897:163222.
[33]Lu JJ, Liu DP, Zhou JC, et al., 2017. Porous organic field-effect transistors for enhanced chemical sensing performances. Adv Funct Mater, 27(20):1700018.
[34]Luong HM, Pham MT, Guin T, et al., 2021. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat Commun, 12(1):2414.
[35]Lv L, Cheng PF, Wang YL, et al., 2020. Sb-doped three-dimensional ZnFe2O4 macroporous spheres for N-butanol chemiresistive gas sensors. Sens Actuat B Chem, 320:128384.
[36]Ma JW, Fan HQ, Zhang WM, et al., 2020. High sensitivity and ultra-low detection limit of chlorine gas sensor based on In2O3 nanosheets by a simple template method. Sens Actuat B Chem, 305:127456.
[37]Masoumi S, Shokrani M, Aghili S, et al., 2019. Zinc oxide-based direct thermoelectric gas sensor for the detection of volatile organic compounds in air. Sens Actuat B Chem, 294:245-252.
[38]Na HB, Zhang XF, Zhang M, et al., 2019a. A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sens Actuat B Chem, 297:126816.
[39]Na HB, Zhang XF, Deng ZP, et al., 2019b. Large-scale synthesis of hierarchically porous ZnO hollow tubule for fast response to ppb-level H2S gas. ACS Appl Mater Interfaces, 11(12):11627-11635.
[40]Nasir ME, Dickson W, Wurtz GA, et al., 2014. Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials. Adv Mater, 26(21):3532-3537.
[41]Ogbeide O, Bae G, Yu WB, et al., 2022. Inkjet‐printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv Funct Mater, 32(25):2113348.
[42]Park SW, Jeong SY, Yoon JW, et al., 2020. General strategy for designing highly selective gas-sensing nanoreactors: morphological control of SnO2 hollow spheres and configurational tuning of Au catalysts. ACS Appl Mater Interfaces, 12(46):51607-51615.
[43]Sabri YM, Kandjani AE, SSAAH Rashid, et al., 2018. Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sens Actuat B Chem, 275:215-222.
[44]Sanger A, Kang SB, Jeong MH, et al., 2018. Morphology-controlled aluminum-doped zinc oxide nanofibers for highly sensitive NO2 sensors with full recovery at room temperature. Adv Sci, 5(9):1800816.
[45]Seo MH, Kang K, Yoo JY, et al., 2020. Chemo-mechanically operating palladium-polymer nanograting film for a self-powered H2 gas sensor. ACS Nano, 14(12):16813-16822.
[46]Sharma B, Sharma A, Myung JH, 2021. Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. Sens Actuat B Chem, 331:129464
[47]Shin H, Lee WJ, 2016. Multi-shelled MgCo2O4 hollow microspheres as anodes for lithium ion batteries. J Mater Chem A, 4(31):12263-12272.
[48]Shin H, Kim DH, Jung W, et al., 2021. Surface activity-tuned metal oxide chemiresistor: toward direct and quantitative halitosis diagnosis. ACS Nano, 15(9):14207-14217.
[49]Sun ZQ, Liao T, Dou YH, et al., 2014. Generalized self-assembly of scalable two-dimensional transition metal oxide nano‑sheets. Nat Commun, 5:3813.
[50]Tammanoon N, Iwamoto T, Ueda T, et al., 2020. Synergistic effects of PdOx-CuOx loadings on methyl mercaptan sensing of porous WO3 microspheres prepared by ultrasonic spray pyrolysis. ACS Appl Mater Interfaces, 12(37):41728-41739.
[51]Tan CL, Zhang H, 2015. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun, 6:7873.
[52]Teng Y, Zhang XF, Xu TT, et al., 2020. A spendable gas sensor with higher sensitivity and lowest detection limit towards H2S: porous α-Fe2O3 hierarchical tubule derived from poplar branch. Chem Eng J, 392:123679.
[53]Tie Y, Ma SY, Pei ST, et al., 2020. Pr doped BiFeO3 hollow nanofibers via electrospinning method as a formaldehyde sensor. Sens Actuat B Chem, 308:127689.
[54]Wang H, Luo YY, Li K, et al., 2022. Porous α-Fe2O3 gas sensor with instantaneous attenuated response toward triethylamine and its reaction kinetics. Chem Eng J, 427:131631.
[55]Wang L, Sun LY, Bian FK, et al., 2022. Self-bonded hydrogel inverse opal particles as sprayed flexible patch for wound healing. ACS Nano, 16(2):2640-2650.
[56]Wang Q, Wu HC, Wang YR, et al., 2021. Ex-situ XPS analysis of yolk-shell Sb2O3/WO3 for ultra-fast acetone resistive sensor. J Hazard Mater, 412:125175.
[57]Wang TS, Jiang B, Yu Q, et al., 2019. Realizing the control of electronic energy level structure and gas-sensing selectivity over heteroatom-doped In2O3 spheres with an inverse opal microstructure. ACS Appl Mater Interfaces, 11(9):9600-9611.
[58]Wen ZY, Ren HB, Li DX, et al., 2023. A highly efficient acetone gas sensor based on 2D porous ZnFe2O4 nanosheets. Sens Actuat B Chem, 379:133287.
[59]Wu YY, Song BY, Zhang XF, et al., 2021. Microtubular α-Fe2O3/Fe2(MoO4)3 heterostructure derived from absorbent cotton for enhanced ppb-level H2S gas-sensing performance. J Alloys Compd, 867:158994.
[60]Xia Y, Zhou LX, Yang J, et al., 2020. Highly sensitive and fast optoelectronic room-temperature NO2 gas sensor based on ZnO nanorod-assembled macro-/mesoporous film. ACS Appl Electron Mater, 2(2):580-589.
[61]Xie WH, Ren Y, Yu BJ, et al., 2021. Self-hybrid transition metal oxide nanosheets synthesized by a facile programmable and scalable carbonate-template method. Small, 17(39):2103176.
[62]Xiong Y, Zhu ZY, Ding DG, et al., 2018. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor. Appl Surf Sci, 443:114-121.
[63]Xu SP, Sun FQ, Gu FL, et al., 2014. Photochemistry-based method for the fabrication of SnO2 monolayer ordered porous films with size-tunable surface pores for direct application in resistive-type gas sensor. ACS Appl Mater Interfaces, 6(2):1251-1257.
[64]Xue MQ, Li FW, Chen D, et al., 2016. High-oriented polypyrrole nanotubes for next-generation gas sensor. Adv Mater, 28(37):8265-8270.
[65]Yang JQ, Han WJ, Ma J, et al., 2021. Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection. Sens Actuat B Chem, 340:129971.
[66]Yang S, Sun J, Xu L, et al., 2020. Au@ZnO functionalized three-dimensional macroporous WO3: a application of selective H2S gas sensor for exhaled breath biomarker detection. Sens Actuat B Chem, 324:128725.
[67]Yang XY, Shi YT, Xie KF, et al., 2022. Cocrystallization enabled spatial self-confinement approach to synthesize crystalline porous metal oxide nanosheets for gas sensing. Angew Chem Int Ed, 61(37):e202207816.
[68]Yao Y, Yin ML, Yan JQ, et al., 2017. Controllable synthesis of Ag-WO3 core-shell nanospheres for light-enhanced gas sensors. Sens Actuat B Chem, 251:583-589.
[69]Yi SY, Song YG, Park JY, et al., 2019. Morphological evolution induced through a heterojunction of W-decorated NiO nanoigloos: synergistic effect on high-performance gas sensors. ACS Appl Mater Interfaces, 11(7):7529-7538.
[70]Yuan HY, Aljneibi SAAA, Yuan JR, et al., 2019. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv Mater, 31(11):1807161.
[71]Yuan KP, Wang CY, Zhu LY, et al., 2020. Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl Mater Interfaces, 12(12):14095-14104.
[72]Zeng G, Wu C, Chang Y, et al., 2019. Detection and discrimination of volatile organic compounds using a single film bulk acoustic wave resonator with temperature modulation as a multiparameter virtual sensor array. ACS Sens, 4(6):1524-1533.
[73]Zeng QR, Feng JT, Lin XC, et al., 2020. One-step facile synthesis of a NiO/ZnO biomorphic nanocomposite using a poplar tree leaf template to generate an enhanced gas sensing platform to detect n-butanol. J Alloys Compd, 815:150550.
[74]Zhang B, Sun JY, Gao PX, 2021. Low-concentration NOx gas analysis using single bimodular ZnO nanorod sensor. ACS Sens, 6(8):2979-2987.
[75]Zhang LH, Dong B, Xu L, et al., 2017. Three-dimensional ordered ZnO-Fe3O4 inverse opal gas sensor toward trace concentration acetone detection. Sens Actuat B Chem, 252:367-374.
[76]Zhang XM, Dong ZJ, Liu SR, et al., 2017. Maize straw-templated hierarchical porous ZnO:Ni with enhanced acetone gas sensing properties. Sens Actuat B Chem, 243:1224-1230.
[77]Zhao C, Zhou AW, Dou YB, et al., 2021. Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO2 reduction. Chem Eng J, 416:129155.
[78]Zhao RJ, Zhang X, Peng SJ, et al., 2020. Shaddock peels as bio-templates synthesis of Cd-doped SnO2 nanofibers: a high performance formaldehyde sensing material. J Alloys Compd, 813:152170.
[79]Zheng XZ, Zhang Z, Meng SG, et al., 2020. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. Chem Eng J, 393:124676.
[80]Zheng YY, Wang LQ, Tian HW, et al., 2021. Bimetal carbonaceous templates for multi-shelled NiCo2O4 hollow sphere with enhanced xylene detection. Sens Actuat B Chem, 339:129862.
[81]Zhu XQ, Li J, Ali RN, et al., 2018. Toward a high-performance Li-ion battery: constructing a Co1-xS/ZnS@C composite derived from metal-organic framework @3D disordered polystyrene sphere template. Mater Des, 160:636-641.
Open peer comments: Debate/Discuss/Question/Opinion
<1>