Full Text:   <650>

Summary:  <69>

CLC number: TN722

On-line Access: 2025-02-10

Received: 2024-01-29

Revision Accepted: 2024-05-27

Crosschecked: 2025-02-18

Cited: 0

Clicked: 1010

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jing XIA

https://orcid.org/0000-0001-6255-9297

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.1 P.146-156

http://doi.org/10.1631/FITEE.2400066


Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization


Author(s):  Zhongpeng NI, Jing XIA, Xinyu ZHOU, Wa KONG, Wence ZHANG, Xiaowei ZHU

Affiliation(s):  School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China; more

Corresponding email(s):   jingxia@ujs.edu.cn

Key Words:  Back-off power range, Doherty power amplifier, Fragment-type structure, Impedance–, phase hybrid function


Share this article to: More <<< Previous Article|

Zhongpeng NI, Jing XIA, Xinyu ZHOU, Wa KONG, Wence ZHANG, Xiaowei ZHU. Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(1): 146-156.

@article{title="Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization",
author="Zhongpeng NI, Jing XIA, Xinyu ZHOU, Wa KONG, Wence ZHANG, Xiaowei ZHU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="1",
pages="146-156",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400066"
}

%0 Journal Article
%T Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization
%A Zhongpeng NI
%A Jing XIA
%A Xinyu ZHOU
%A Wa KONG
%A Wence ZHANG
%A Xiaowei ZHU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 1
%P 146-156
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400066

TY - JOUR
T1 - Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization
A1 - Zhongpeng NI
A1 - Jing XIA
A1 - Xinyu ZHOU
A1 - Wa KONG
A1 - Wence ZHANG
A1 - Xiaowei ZHU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 1
SP - 146
EP - 156
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400066


Abstract: 
The present paper proposes an optimization design method for the Doherty output matching network (OMN) using impedance–;phase hybrid objective function constraints, which possesses the capability of enhancing the efficiency consistency of the doherty power amplifier (DPA) using integrated enhancing reactance (IER) during the back-off power (BOP) range. By calculating the desired reactance for an extended BOP range and combining it with the two-impedance matching method, the S-parameters of the OMN are obtained. Meanwhile, the impedance and phase constraints of the OMN are proposed to narrow the distribution range of the IER. Furthermore, a fragment-type structure is employed in the OMN optimization so as to enhance the flexibility of the circuit optimization design. To validate the proposed method, a 1.7–2.5 GHz symmetric DPA with a large BOP range was designed and fabricated. Measurement results demonstrate that across the entire operating frequency band, the saturated output power is >44 dBm, and the efficiency ranges from 45% to 55% at a 9-dB BOP.

基于阻抗和相位混合优化的宽带对称式高回退Doherty功率放大器设计

倪中鹏1,夏景1,周新宇2,孔娃1,张文策1,朱晓维3
1江苏大学计算机与通信工程学院,中国镇江市,212013
2香港理工大学电子信息工程系,中国香港特别行政区,999077
3东南大学毫米波国家重点实验室,中国南京市,210096
摘要:提出一种基于阻抗-相位混合目标函数约束的Doherty输出匹配网络优化设计方法,该方法能够利用集成增强电抗提高Doherty功率放大器在功率回退时的效率一致性。通过计算扩展功率回退范围所需的电抗,并结合双阻抗匹配方法来获得输出匹配网络设计所需的S参数。同时,该方法对输出匹配网络的阻抗和相位进行约束,以减小集成增强电抗的分布范围。此外,在输出匹配网络优化中采用了网格型结构,以增强电路优化设计的灵活性。为验证所提方法的有效性,设计并制造了一个1.7-2.5 GHz对称式高回退功率放大器。测试结果表明,在整个工作频带内,饱和输出功率高于44 dBm,9-dB回退功率效率为45%-55%。

关键词:回退功率范围;Doherty功率放大器;片段式结构;阻抗-相位混合函数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akbarpour M, Helaoui M, Ghannouchi FM, 2012. A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers. IEEE Trans Microw Theory Tech, 60(9):2863-2874.

[2]Asbeck P, Popovic Z, 2016. ET comes of age: envelope tracking for higher-efficiency power amplifiers. IEEE Microw Mag, 17(3):16-25.

[3]Chen SC, Wang WW, Xu KW, et al., 2018. A reactance compensated three-device Doherty power amplifier for bandwidth and back-off range extension. Wirel Commun Mob Comput, 2018:8418165.

[4]Choi W, Kang H, Oh H, et al., 2021. Doherty power amplifier based on asymmetric cells with complex combining load. IEEE Trans Microw Theory Tech, 69(4):2336-2344.

[5]Chung A, Rejeb MB, Darwish A, et al., 2018. Frequency doubler based outphasing system for millimeter wave vector signal generation. Proc 15th European Radar Conf, p.449-452.

[6]Cui J, Li PP, Sheng WX, 2023. High linearity U-band power amplifier design: a novel intermodulation point analysis method. Front Inform Technol Electron Eng, 24(1):176-186.

[7]Dai ZJ, Kong SM, Feng W, et al., 2024. Design of wideband asymmetric Doherty power amplifier using a new phase compensation technique. IEEE Trans Circ Syst I Regular Papers, 71(3):1093-1104.

[8]Doherty WH, 1936. A new high efficiency power amplifier for modulated waves. Proc Inst Radio Eng, 24(9):1163-1182.

[9]Fang XH, Cheng KKM, 2014. Extension of high-efficiency range of Doherty amplifier by using complex combining load. IEEE Trans Microw Theory Tech, 62(9):2038-2047.

[10]Guo J, Crupi G, Cai JL, 2022. A broadband asymmetric Doherty power amplifier design based on multiobjective Bayesian optimization: theoretical and experimental validation. IEEE Access, 10:89823-89834.

[11]Karahan EA, Liu Z, Sengupta K, 2023. Deep-learning-based inverse-designed millimeter-wave passives and power amplifiers. IEEE J Sol-State Circ, 58(11):3074-3088.

[12]Kong W, Xia J, Meng F, et al., 2018. A Doherty power amplifier with large back-off power range using integrated enhancing reactance. Wirel Commun Mob Comput, 2018:3968308.

[13]Kong W, Zhong YJ, Xia J, et al., 2024. Optimization design of broadband Doherty PA using fragment-type matching network based on dual-state impedance objective function. IEEE Trans Circ Syst II Express Briefs, 71(4):1809-1813.

[14]Li C, You F, Peng J, et al., 2020. Co-design of matching sub-networks to realize broadband symmetrical Doherty with configurable back-off region. IEEE Trans Circ Syst II Express Briefs, 67(10):1730-1734.

[15]Li M, Li ZQ, Zheng Q, et al., 2022. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design. Front Inform Technol Electron Eng, 23(2):346-350.

[16]Li MY, Cheng XB, Dai ZJ, et al., 2023. A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier. Front Inform Technol Electron Eng, 24(3):470-479.

[17]Liu X, Lv GS, Wang DH, et al., 2020. Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review. Front Inform Technol Electron Eng, 21(1):72-96.

[18]Lyu H, Lovato R, Gowri SP, et al., 2023. Co-design of Doherty power amplifier and post-matching bandpass filter. IEEE Wireless and Microwave Technology Conf, p.65-68.

[19]Nan JC, Wang H, Cong MF, et al., 2021. A broadband Doherty power amplifier with a new load modulation network. IEEE Access, 9:58025-58033.

[20]Özen M, Andersson K, Fager C, 2016. Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans Microw Theory Tech, 64(4):1273-1284.

[21]Pang JZ, He SB, Huang CY, et al., 2015. A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications. IEEE Trans Microw Theory Tech, 63(12):4061-4071.

[22]Ren M, Gao RB, Liu S, et al., 2024. Design of wideband Doherty power amplifier using inverse continuous class-F mode. IEEE Trans Circ Syst II Express Briefs, 71(9):4176-4180.

[23]Roychowdhury D, Kitchen J, 2022. Asymmetrical continuous mode Doherty power amplifier using complex combining load impedance. IEEE Texas Symp on Wireless and Microwave Circuits and Systems, p.1-5.

[24]Ruhul Hasin M, Kitchen J, 2019. Exploiting phase for extended efficiency range in symmetrical Doherty power amplifiers. IEEE Trans Microw Theory Tech, 67(8):3455-3463.

[25]Shi WM, He SB, Gideon N, 2017. Extending high-efficiency power range of symmetrical Doherty power amplifiers by taking advantage of peaking stage. IET Microw Antenn Propag, 11(9):1296-1302.

[26]Shi WM, He SB, Zhu XY, et al., 2018. Broadband continuous-mode Doherty power amplifiers with non-infinity peaking impedance. IEEE Trans Microw Theory Tech, 66(2):1034-1046.

[27]Wang H, Nan JC, Cong MF, et al., 2022. A broadband power amplifier with multifrequency impedance matching. IEEE Microw Wirel Compon Lett, 32(11):1339-1342.

[28]Xia J, Yang MS, Guo Y, et al., 2016. A broadband high-efficiency Doherty power amplifier with integrated compensating reactance. IEEE Trans Microw Theory Tech, 64(7):2014-2024.

[29]Xia J, Bian CX, Kong W, et al., 2022. Optimization design of fragment-type filtering matching network for continuous inverse class-F power amplifier. IEICE Electron Express, 19(14):20220043.

[30]Xiao F, Dai ZJ, Pang JZ, et al., 2021. A Doherty power amplifier with extended back-off by using non-infinite peaking impedance and complex combining load. IEEE MTT-S Int Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, p.182-184.

[31]Xu Y, Pang JZ, Wang XY, et al., 2021. Enhancing bandwidth and back-off range of Doherty power amplifier with modified load modulation network. IEEE Trans Microw Theory Tech, 69(4):2291-2303.

[32]Yang ZX, Yao Y, Li MY, et al., 2019. Bandwidth extension of Doherty power amplifier using complex combining load with noninfinity peaking impedance. IEEE Trans Microw Theory Tech, 67(2):765-777.

[33]Yao Y, Dai ZJ, Li MY, 2024. A novel topology with controllable wideband baseband impedance for power amplifiers. Front Inform Technol Electron Eng, 25(2):308-315.

[34]Zhang JR, Zheng SY, Yang N, 2023. An efficient broadband symmetrical Doherty power amplifier with extended back-off range. IEEE Trans Circ Syst II Express Briefs, 70(4):1316-1320.

[35]Zhang QF, Li H, 2007. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput, 11(6):712-731.

[36]Zhou H, Perez-Cisneros JR, Hesami S, et al., 2022. A generic theory for design of efficient three-stage Doherty power amplifiers. IEEE Trans Microw Theory Tech, 70(2):1242-1253.

[37]Zhou LH, Zhou XY, Chan WS, 2023. A compact and broadband Doherty power amplifier without post-matching network. IEEE Trans Circ Syst II Express Briefs, 70(3):919-923.

[38]Zhou XY, Chan WS, Sharma T, et al., 2022. A Doherty power amplifier with extended high-efficiency range using three-port harmonic injection network. IEEE Trans Circ Syst I Regular Papers, 69(7):2756-2766.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE