Full Text:   <467>

Summary:  <126>

CLC number: TN29

On-line Access: 2024-02-23

Received: 2023-05-13

Revision Accepted: 2024-02-23

Crosschecked: 2023-10-08

Cited: 0

Clicked: 593

Citations:  Bibtex RefMan EndNote GB/T7714


Jinrong WANG


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.2 P.316-322


A low-noise, high-gain, and large-dynamic-range photodetector based on a JFET and a charge amplifier

Author(s):  Jinrong WANG, Shuang’e WU, Chengdong MI, Yaner QIU, Xin’ai BAI

Affiliation(s):  Department of Physics, Lyuliang University, Lvliang033001, China; more

Corresponding email(s):   wjrong2017@126.com, 5534964115@qq.com, chengdongmi_119@163.com, 20011030@llu.edu.cn, 19941030@llu.edu.cn

Key Words:  Quantum noise, Bell-state detection (BSD), Photodetector (PD), Junction field-effect transistor (JFET), Charge amplifier

Jinrong WANG, Shuang’e WU, Chengdong MI, Yaner QIU, Xin’ai BAI. A low-noise, high-gain, and large-dynamic-range photodetector based on a JFET and a charge amplifier[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(2): 316-322.

@article{title="A low-noise, high-gain, and large-dynamic-range photodetector based on a JFET and a charge amplifier",
author="Jinrong WANG, Shuang’e WU, Chengdong MI, Yaner QIU, Xin’ai BAI",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A low-noise, high-gain, and large-dynamic-range photodetector based on a JFET and a charge amplifier
%A Jinrong WANG
%A Shuang’e WU
%A Chengdong MI
%A Yaner QIU
%A Xin’ai BAI
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 2
%P 316-322
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300340

T1 - A low-noise, high-gain, and large-dynamic-range photodetector based on a JFET and a charge amplifier
A1 - Jinrong WANG
A1 - Shuang’e WU
A1 - Chengdong MI
A1 - Yaner QIU
A1 - Xin’ai BAI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 2
SP - 316
EP - 322
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300340

We demonstrate a low-noise, high-gain, and large-dynamic-range photodetector (PD) based on a junction field-effect transistor (JFET) and a charge amplifier for the measurement of quantum noise in bell-state detection (BSD). Particular photodiode junction capacitance allows the silicon N-channel JFET 2sk152 to be matched to the noise requirement for charge amplifier A250. The electronic noise of the PD is effectively suppressed and the signal-to-noise ratio (SNR) is up to 15 dB at the analysis frequency of 2.75 MHz for a coherent laser power of 50.08 μW. By combining of the inductor and capacitance, the alternating current (AC) and direct current (DC) branches of the PD can operate linearly in a dynamic range from 25.06 μW to 17.50 mW. The PD can completely meet the requirements of SNR and dynamic range for BSD in quantum optics experiments.


摘要:设计一种基于J型场效应管和电荷放大器的低噪声、高增益、大动态范围光电探测器,用于贝尔态探测中量子噪声的测量。特定光电二极管的结电容允许硅N沟道J型场效应管2sk152匹配电荷放大器A250的噪声要求。当相干激光功率为50.08 µW时,在2.75 MHz分析频率处,光电探测器的电子噪声得到有效抑制,信噪比高达15 dB。通过电感和电容组合,光电探测器的交流和直流支路可以在25.06 µW~17.50 mW的动态范围内线性工作。该光电探测器可以完全满足量子光学实验中贝尔态探测对信噪比和动态范围的要求。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Appel J, Hoffman D, Figueroa E, et al., 2007. Electronic noise in optical homodyne tomography. Phys Rev A, 75(3):035802.

[2]Bickman S, DeMille D, 2005. Large-area, low-noise, high-speed, photodiode-based fluorescence detectors with fast overdrive recovery. Rev Sci Instrum, 76(11):113101.

[3]Bowden W, Vianello A, Hobson R, 2019. A low-noise resonant input transimpedance amplified photodetector. Rev Sci Instrum, 90(10):106106.

[4]Breitenbach G, Schiller S, Mlynek J, 1997. Measurement of the quantum states of squeezed light. Nature, 387(6632):471-475.

[5]Graeme J, 1995. Photodiode Amplifiers: OP AMP Solutions. McGraw-Hill, New York, USA, p.4-7.

[6]Gray MB, Shaddock DA, Harb CC, et al., 1998. Photodetector designs for low-noise, broadband, and high-power applications. Rev Sci Instrum, 69(11):3755-3762.

[7]Huang D, Fang J, Wang C, et al., 2013. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution. Chin Phys Lett, 30(11):114209.

[8]Jin XL, Su J, Zheng YH, et al., 2015. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt Expr, 23(18):23859-23866.

[9]Kumar R, Barrios E, MacRae A, et al., 2012. Versatile wideband balanced detector for quantum optical homodyne tomography. Opt Commun, 285:5259-5267.

[10]Langenfeld S, Welte S, Hartung L, et al., 2021. Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys Rev Lett, 126:130502.

[11]Li XW, Fu X, Yan F, et al., 2022. Current status and future development of quantum computation. Strat Study CAE, 24(4):133-144(in Chinese).

[12]Lim CCW, Xu FH, Pan JW, et al., 2021. Security analysis of quantum key distribution with small block length and its application to quantum space communications. Phys Rev Lett, 126(10):100501.

[13]Lin J, Ji YJ, Zhao J, et al., 2022. Development strategy of quantum-based deep geophysical exploration technology and equipment. Strat Study CAE, 24(4):156-166(in Chinese).

[14]Liu MM, Krämer J, Hu YP, et al., 2017. Quantum security analysis of a lattice-based oblivious transfer protocol. Front Inform Technol Electron Eng, 18(9):1348-1369.

[15]Liu SS, Lou YB, Jing JT, 2020. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat Commun, 11(1):3875.

[16]Ma HQ, Han YX, Dou TQ, et al., 2023. Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology. Chin Phys B, 32(2):020304.

[17]Masalov AV, Kuzhamuratov A, Lvovsky AI, 2017. Noise spectra in balanced optical detectors based on transimpedance amplifiers. Rev Sci Instrum, 88(11):113109.

[18]Okubo R, Hirano M, Zhang Y, et al., 2008. Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz. Opt Lett, 33(13):1458-1460.

[19]Palmer C, 2023. Quantum cryptography competition yields next-generation standard algorithms. Engineering, 21:6-8.

[20]Pirandola S, Andersen UL, Banchi L, et al., 2020. Advances in quantum cryptography. Adv Opt Photon, 12(4):‍1012-1236.

[21]Qin JL, Yan ZH, Huo MR, et al., 2016. Design of low-noise photodetector with a bandwidth of 130 MHz based on transimpedance amplification circuit. Chin Opt Lett, 14(12):122701.

[22]Shi SP, Tian L, Wang YJ, et al., 2020. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys Rev Lett, 125(7):070502.

[23]Shi SP, Wang YJ, Tian L, et al., 2023. Continuous variable quantum teleportation network. Laser Photon Rev, 17:2200508.

[24]Tian L, Shi SP, Tian YH, et al., 2021. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front Phys, 16(2):21502.

[25]Tian Y, Wang P, Liu JQ, et al., 2022. Experimental demonstration of continuous-variable measurement-device-independent quantum key distribution over optical fiber. Optica, 9(5):492-500.

[26]Vahlbruch H, Mehmet M, Danzmann K, et al., 2016. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys Rev Lett, 117(11):110801.

[27]Wang JR, Zhang WH, Tian L, et al., 2019. Balanced homodyne detector with independent phase control and noise detection branches. IEEE Access, 7:57054-57059.

[28]Wang JR, Zhang HY, Zhao ZL, et al., 2020. Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector. Chin Phys B, 29(12):124207.

[29]Wang SF, Xiang X, Zhou CH, et al., 2017. Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit and its verification. Rev Sci Instrum, 88(1):013107.

[30]Wang XB, 2018. The front, theory and practice of quantum communication. Strat Study CAE, 20(6):87-92(in Chinese).

[31]Weigang L, Enamoto LM, Li DL, et al., 2022. New directions for artificial intelligence: human, machine, biological, and quantum intelligence. Front Inform Technol Electron Eng, 23(6):984-990.

[32]Yang WH, Shi SP, Wang YJ, et al., 2017. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt Lett, 42(21):4553-4556.

[33]Yang X, Su B, Wu YX, et al., 2019. Enhanced bandwidth, high gain, low noise transimpedance amplifier for asynchronous optical sampling systems. Rev Sci Instrum, 90(6):063103.

[34]Yu HF, Bai L, 2021. Post-quantum blind signcryption scheme from lattice. Front Inform Technol Electron Eng, 22(6):891-901.

[35]Yuen HP, Chan VWS, 1983. Noise in homodyne and heterodyne detection. Opt Lett, 8(3):177-179.

[36]Zhang J, Peng KC, 2000. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state. Phys Rev A, 62:064302.

[37]Zhang X, Gao F, Qin SJ, et al., 2022. Current status and future development of quantum cryptographic protocols. Strat Study CAE, 24(4):145-155(in Chinese).

[38]Zhou HJ, Yang WH, Li ZX, et al., 2014. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement. Rev Sci Instrum, 85(1):013111.

[39]Zhou HJ, Wang WZ, Chen CY, et al., 2015. A low-noise, large-dynamic-range-enhanced amplifier based on JFET buffering input and JFET bootstrap structure. IEEE Sens J, 15(4):2101-2105.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE