Full Text:   <218>

Summary:  <89>

Suppl. Mater.: 

CLC number: TN928

On-line Access: 2025-01-24

Received: 2024-05-10

Revision Accepted: 2025-01-24

Crosschecked: 2024-10-27

Cited: 0

Clicked: 377

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Luchu LI

https://orcid.org/0009-0006-4977-1254

Cunhua PAN

https://orcid.org/0000-0001-5286-7958

Kangda ZHI

https://orcid.org/0000-0002-1677-847X

Hong REN

https://orcid.org/0000-0002-3477-1087

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.12 P.1679-1694

http://doi.org/10.1631/FITEE.2400375


Transmission design for the XL-RIS-aided massive MIMO system with visibility regions


Author(s):  Luchu LI, Cunhua PAN, Kangda ZHI, Hong REN

Affiliation(s):  School of Information Science and Engineering, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   213203234@seu.edu.cn, cpan@seu.edu.cn, k.zhi@tu-berlin.de, hren@seu.edu.cn

Key Words:  Reconfigurable intelligent surface, Massive multi-input multi-output (MIMO), Two-timescale transmission scheme, Visibility regions


Luchu LI, Cunhua PAN, Kangda ZHI, Hong REN. Transmission design for the XL-RIS-aided massive MIMO system with visibility regions[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1679-1694.

@article{title="Transmission design for the XL-RIS-aided massive MIMO system with visibility regions",
author="Luchu LI, Cunhua PAN, Kangda ZHI, Hong REN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1679-1694",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400375"
}

%0 Journal Article
%T Transmission design for the XL-RIS-aided massive MIMO system with visibility regions
%A Luchu LI
%A Cunhua PAN
%A Kangda ZHI
%A Hong REN
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1679-1694
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400375

TY - JOUR
T1 - Transmission design for the XL-RIS-aided massive MIMO system with visibility regions
A1 - Luchu LI
A1 - Cunhua PAN
A1 - Kangda ZHI
A1 - Hong REN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1679
EP - 1694
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400375


Abstract: 
This study proposes a two-timescale transmission scheme for extremely large-scale reconfigurable intelligent surface aided (XL-RIS-aided) massive multi-input multi-output (MIMO) systems in the presence of visibility regions (VRs). The beamforming of base stations (BSs) is designed based on rapidly changing instantaneous channel state information (CSI), while the phase shifts of RIS are configured based on slowly varying statistical CSI. Specifically, we first formulate a system model with spatially correlated Rician fading channels and introduce the concept of VRs. Then, we derive a closed-form approximate expression for the achievable rate and analyze the impact of VRs on system performance and computational complexity. Then, we solve the problem of maximizing the minimum user rate by optimizing the phase shifts of RIS through an algorithm based on accelerated gradient ascent. Finally, we present numerical results to validate the performance of the considered system from different aspects and reveal the low system complexity of deploying XL-RIS in massive MIMO systems with the help of VRs.

具有可见区域的超大规模RIS辅助大规模MIMO系统传输方案设计

李卢初1,潘存华1,支康达2,任红1
1东南大学信息科学与工程学院,中国南京市,210096
2柏林工业大学电子工程与计算机科学学院,德国柏林,10623
摘要:本研究提出一种基于可见区域的超大规模可重构智能表面辅助大规模多输入多输出系统的双时间尺度传输方案。在此方案中,基站的波束成形是基于快速变化的瞬时信道状态信息设计的,而可重构智能表面的相位偏移则是基于缓慢变化的统计信道状态信息配置的。具体而言,首先建立了一个包含空间相关莱斯衰落信道的系统模型,并引入了可见区域的概念。然后,推导了可实现速率的闭式近似表达式,并分析了可见区域对系统性能和计算复杂度的影响。接着,通过基于加速梯度上升的算法优化可重构智能表面的相位偏移,解决了最大化最小用户速率的问题。最后,展示了数值结果,验证了所考虑系统在不同方面的性能,并揭示了在可见区域理论的帮助下,部署超大规模可重构智能表面在大规模多输入多输出系统中的低系统复杂度。

关键词:可重构智能表面;大规模多输入多输出;双时间尺度传输方案;可见区域

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abrardo A, Dardari D, Di Renzo M, 2021. Intelligent reflecting surfaces: sum-rate optimization based on statistical position information. IEEE Trans Commun, 69(10):7121-7136.

[2]Ali A, Carvalho ED, Heath RW, 2019. Linear receivers in non-stationary massive MIMO channels with visibility regions. IEEE Wirel Commun Lett, 8(3):885-888.

[3]Björnson E, Sanguinetti L, 2021. Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces. IEEE Wirel Commun Lett, 10(4):830-834.

[4]Cao YS, Lv TJ, Ni W, 2022. Two-timescale optimization for intelligent reflecting surface-assisted MIMO transmission in fast-changing channels. IEEE Trans Wirel Commun, 21(12):10424-10437.

[5]Carvalho ED, Ali A, Amiri A, et al., 2020. Non-stationarities in extra-large-scale massive MIMO. IEEE Wirel Commun, 27(4):74-80.

[6]Chen TR, You ML, Zhang YYS, et al., 2024. Model-free optimization and experimental validation of RIS-assisted wireless communications under rich multipath fading. IEEE Wirel Commun Lett, 13(3):627-631.

[7]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677.

[8]Gan X, Zhong CJ, Huang CW, et al., 2022. Multiple RISs assisted cell-free networks with two-timescale CSI: performance analysis and system design. IEEE Trans Commun, 70(11):7696-7710.

[9]Gao YW, Xu JD, Xu W, et al., 2021. Distributed IRS with statistical passive beamforming for MISO communications. IEEE Wirel Commun Lett, 10(2):221-225.

[10]Gunasinghe D, Amarasuriya G, 2023. Achievable rate analysis for extra-large RIS-aided massive MIMO with visibility regions. IEEE Int Conf on Communications, p.1542-1547.

[11]Guo YB, Sun P, Yuan ZD, et al., 2023. Efficient channel estimation for RIS-aided MIMO communications with unitary approximate message passing. IEEE Trans Wirel Commun, 22(2):1403-1416.

[12]Han Y, Tang WK, Jin S, et al., 2019. Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Trans Veh Technol, 68(8):8238-8242.

[13]Han Y, Jin S, Wen CK, et al., 2022. Localization and channel reconstruction for extra large RIS-assisted massive MIMO systems. IEEE J Sel Top Signal Process, 16(5):1011-1025.

[14]Hu C, Dai LL, Han SF, et al., 2021. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications. IEEE Trans Commun, 69(11):7736-7747.

[15]Huang CW, Hu S, Alexandropoulos GC, et al., 2020. Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends. IEEE Wirel Commun, 27(5):118-125.

[16]Jaynes ET, 1957. Information theory and statistical mechanics. Phys Rev, 106(4):620-630.

[17]Jia YH, Ye CC, Cui Y, 2020. Analysis and optimization of an intelligent reflecting surface-assisted system with interference. IEEE Int Conf on Communications, p.1-6.

[18]Jiang H, Xiong BP, Zhang HM, et al., 2023. Physics-based 3D end-to-end modeling for double-RIS assisted non-stationary UAV-to-ground communication channels. IEEE Trans Commun, 71(7):4247-4261.

[19]Li RW, Sun S, Chen YH, et al., 2023. Ergodic achievable rate analysis and optimization of RIS-assisted millimeter-wave MIMO communication systems. IEEE Trans Wirel Commun, 22(2):972-985.

[20]Li XR, Zhou SD, Björnson E, et al., 2015. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems. IEEE Trans Wirel Commun, 14(12):7044-7056.

[21]Li XS, 1992. An entropy-based aggregate method for minimax optimization. Eng Optim, 18(4):277-285.

[22]Liu YW, Xu JQ, Wang ZL, et al., 2023. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions. Front Inform Technol Electron Eng, 24(12):1689-1707.

[23]Marzetta TL, Larsson EG, Yang H, et al., 2016. Fundamentals of Massive MIMO. Cambridge University Press, Cambridge, UK.

[24]Pan CH, Ren H, Wang KZ, et al., 2021. Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions. IEEE Commun Mag, 59(6):14-20.

[25]Pan CH, Zhou G, Zhi KD, et al., 2022. An overview of signal processing techniques for RIS/IRS-aided wireless systems. IEEE J Sel Top Signal Process, 16(5):883-917.

[26]Peng ZD, Pan CH, Zhou G, et al., 2023. Two-stage channel estimation for RIS-aided multiuser mmWave systems with reduced error propagation and pilot overhead. IEEE Trans Signal Process, 71:3607-3622.

[27]Ren H, Liu XY, Pan CH, et al., 2023. Performance analysis for RIS-aided secure massive MIMO systems with statistical CSI. IEEE Wirel Commun Lett, 12(1):124-128.

[28]Tang WK, Chen MZ, Chen XY, et al., 2021. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement. IEEE Trans Wirel Commun, 20(1):421-439.

[29]Wang JH, Wang HQ, Han Y, et al., 2021. Joint transmit beamforming and phase shift design for reconfigurable intelligent surface assisted MIMO systems. IEEE Trans Cogn Commun Netw, 7(2):354-368.

[30]Wang XH, Shu F, Chen RQ, et al., 2023. Beamforming design for RIS-aided amplify-and-forward relay networks. Front Inform Technol Electron Eng, 24(12):1728-1738.

[31]Wang ZR, Liu L, Cui SG, 2020. Channel estimation for intelligent reflecting surface assisted multiuser communications: framework, algorithms, and analysis. IEEE Trans Wirel Commun, 19(10):6607-6620.

[32]Wei XH, Dai LL, Zhao YJ, et al., 2022. Codebook design and beam training for extremely large-scale RIS: far-field or near-field? China Commun, 19(6):193-204.

[33]Xu DN, Han Y, Li X, et al., 2023. Energy efficiency optimization for a RIS-assisted multi-cell communication system based on a practical RIS power consumption model. Front Inform Technol Electron Eng, 24(12):1717-1727.

[34]Yang L, Meng FX, Zhang JY, et al., 2020a. On the performance of RIS-assisted dual-hop UAV communication systems. IEEE Trans Veh Technol, 69(9):10385-10390.

[35]Yang L, Yang JX, Xie WW, et al., 2020b. Secrecy performance analysis of RIS-aided wireless communication systems. IEEE Trans Veh Technol, 69(10):12296-12300.

[36]Yang L, Yang Y, da Costa DB, et al., 2021. Outage probability and capacity scaling law of multiple RIS-aided networks. IEEE Wirel Commun Lett, 10(2):256-260.

[37]Yang SJ, Lyu W, Xiu Y, et al., 2023. Active 3D double-RIS-aided multi-user communications: two-timescale-based separate channel estimation via Bayesian learning. IEEE Trans Commun, 71(6):3605-3620.

[38]Yu X, Shen WQ, Zhang R, et al., 2023. Channel estimation for XL-RIS-aided millimeter-wave systems. IEEE Trans Commun, 71(9):5519-5533.

[39]Zhang Q, Lu ZH, Jin S, et al., 2013. Power scaling of massive MIMO systems with arbitrary-rank channel means and imperfect CSI. IEEE Global Communications Conf, p.4157-4162.

[40]Zhang Y, 2023. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions. Front Inform Technol Electron Eng, 24(12):1669-1688.

[41]Zheng BX, You CS, Zhang R, 2021. Double-IRS assisted multi-user MIMO: cooperative passive beamforming design. IEEE Trans Wirel Commun, 20(7):4513-4526.

[42]Zhi KD, 2023. Two-Timescale Design for RIS-Aided Massive MIMO Systems. PhD Thesis, Queen Mary University of London, UK.

[43]Zhi KD, Pan CH, Ren H, et al., 2022a. Active RIS versus passive RIS: which is superior with the same power budget? IEEE Commun Lett, 26(5):1150-1154.

[44]Zhi KD, Pan CH, Ren H, et al., 2022b. Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI. IEEE Trans Commun, 70(5):3558-3574.

[45]Zhi KD, Pan CH, Ren H, et al., 2023. Two-timescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI. IEEE Trans Inform Theory, 69(5):3001-3033.

[46]Zhi KD, Pan CH, Ren H, et al., 2024. Performance analysis and low-complexity design for XL-MIMO with near-field spatial non-stationarities. IEEE J Sel Areas Commun, 42(6):1656-1672.

[47]Zhou G, Pan CH, Ren H, et al., 2022. Channel estimation for RIS-aided multiuser millimeter-wave systems. IEEE Trans Signal Process, 70:1478-1492.

[48]Zhou SQ, Xu W, Wang KZ, et al., 2020. Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments. IEEE Wirel Commun Lett, 9(9):1366-1369.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE