CLC number: TN928
On-line Access: 2025-01-24
Received: 2024-05-10
Revision Accepted: 2025-01-24
Crosschecked: 2024-10-27
Cited: 0
Clicked: 377
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0006-4977-1254
https://orcid.org/0000-0001-5286-7958
Luchu LI, Cunhua PAN, Kangda ZHI, Hong REN. Transmission design for the XL-RIS-aided massive MIMO system with visibility regions[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1679-1694.
@article{title="Transmission design for the XL-RIS-aided massive MIMO system with visibility regions",
author="Luchu LI, Cunhua PAN, Kangda ZHI, Hong REN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1679-1694",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400375"
}
%0 Journal Article
%T Transmission design for the XL-RIS-aided massive MIMO system with visibility regions
%A Luchu LI
%A Cunhua PAN
%A Kangda ZHI
%A Hong REN
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1679-1694
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400375
TY - JOUR
T1 - Transmission design for the XL-RIS-aided massive MIMO system with visibility regions
A1 - Luchu LI
A1 - Cunhua PAN
A1 - Kangda ZHI
A1 - Hong REN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1679
EP - 1694
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400375
Abstract: This study proposes a two-timescale transmission scheme for extremely large-scale reconfigurable intelligent surface aided (XL-RIS-aided) massive multi-input multi-output (MIMO) systems in the presence of visibility regions (VRs). The beamforming of base stations (BSs) is designed based on rapidly changing instantaneous channel state information (CSI), while the phase shifts of RIS are configured based on slowly varying statistical CSI. Specifically, we first formulate a system model with spatially correlated Rician fading channels and introduce the concept of VRs. Then, we derive a closed-form approximate expression for the achievable rate and analyze the impact of VRs on system performance and computational complexity. Then, we solve the problem of maximizing the minimum user rate by optimizing the phase shifts of RIS through an algorithm based on accelerated gradient ascent. Finally, we present numerical results to validate the performance of the considered system from different aspects and reveal the low system complexity of deploying XL-RIS in massive MIMO systems with the help of VRs.
[1]Abrardo A, Dardari D, Di Renzo M, 2021. Intelligent reflecting surfaces: sum-rate optimization based on statistical position information. IEEE Trans Commun, 69(10):7121-7136.
[2]Ali A, Carvalho ED, Heath RW, 2019. Linear receivers in non-stationary massive MIMO channels with visibility regions. IEEE Wirel Commun Lett, 8(3):885-888.
[3]Björnson E, Sanguinetti L, 2021. Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces. IEEE Wirel Commun Lett, 10(4):830-834.
[4]Cao YS, Lv TJ, Ni W, 2022. Two-timescale optimization for intelligent reflecting surface-assisted MIMO transmission in fast-changing channels. IEEE Trans Wirel Commun, 21(12):10424-10437.
[5]Carvalho ED, Ali A, Amiri A, et al., 2020. Non-stationarities in extra-large-scale massive MIMO. IEEE Wirel Commun, 27(4):74-80.
[6]Chen TR, You ML, Zhang YYS, et al., 2024. Model-free optimization and experimental validation of RIS-assisted wireless communications under rich multipath fading. IEEE Wirel Commun Lett, 13(3):627-631.
[7]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677.
[8]Gan X, Zhong CJ, Huang CW, et al., 2022. Multiple RISs assisted cell-free networks with two-timescale CSI: performance analysis and system design. IEEE Trans Commun, 70(11):7696-7710.
[9]Gao YW, Xu JD, Xu W, et al., 2021. Distributed IRS with statistical passive beamforming for MISO communications. IEEE Wirel Commun Lett, 10(2):221-225.
[10]Gunasinghe D, Amarasuriya G, 2023. Achievable rate analysis for extra-large RIS-aided massive MIMO with visibility regions. IEEE Int Conf on Communications, p.1542-1547.
[11]Guo YB, Sun P, Yuan ZD, et al., 2023. Efficient channel estimation for RIS-aided MIMO communications with unitary approximate message passing. IEEE Trans Wirel Commun, 22(2):1403-1416.
[12]Han Y, Tang WK, Jin S, et al., 2019. Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Trans Veh Technol, 68(8):8238-8242.
[13]Han Y, Jin S, Wen CK, et al., 2022. Localization and channel reconstruction for extra large RIS-assisted massive MIMO systems. IEEE J Sel Top Signal Process, 16(5):1011-1025.
[14]Hu C, Dai LL, Han SF, et al., 2021. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications. IEEE Trans Commun, 69(11):7736-7747.
[15]Huang CW, Hu S, Alexandropoulos GC, et al., 2020. Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends. IEEE Wirel Commun, 27(5):118-125.
[16]Jaynes ET, 1957. Information theory and statistical mechanics. Phys Rev, 106(4):620-630.
[17]Jia YH, Ye CC, Cui Y, 2020. Analysis and optimization of an intelligent reflecting surface-assisted system with interference. IEEE Int Conf on Communications, p.1-6.
[18]Jiang H, Xiong BP, Zhang HM, et al., 2023. Physics-based 3D end-to-end modeling for double-RIS assisted non-stationary UAV-to-ground communication channels. IEEE Trans Commun, 71(7):4247-4261.
[19]Li RW, Sun S, Chen YH, et al., 2023. Ergodic achievable rate analysis and optimization of RIS-assisted millimeter-wave MIMO communication systems. IEEE Trans Wirel Commun, 22(2):972-985.
[20]Li XR, Zhou SD, Björnson E, et al., 2015. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems. IEEE Trans Wirel Commun, 14(12):7044-7056.
[21]Li XS, 1992. An entropy-based aggregate method for minimax optimization. Eng Optim, 18(4):277-285.
[22]Liu YW, Xu JQ, Wang ZL, et al., 2023. Simultaneously transmitting and reflecting (STAR) RISs for 6G: fundamentals, recent advances, and future directions. Front Inform Technol Electron Eng, 24(12):1689-1707.
[23]Marzetta TL, Larsson EG, Yang H, et al., 2016. Fundamentals of Massive MIMO. Cambridge University Press, Cambridge, UK.
[24]Pan CH, Ren H, Wang KZ, et al., 2021. Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions. IEEE Commun Mag, 59(6):14-20.
[25]Pan CH, Zhou G, Zhi KD, et al., 2022. An overview of signal processing techniques for RIS/IRS-aided wireless systems. IEEE J Sel Top Signal Process, 16(5):883-917.
[26]Peng ZD, Pan CH, Zhou G, et al., 2023. Two-stage channel estimation for RIS-aided multiuser mmWave systems with reduced error propagation and pilot overhead. IEEE Trans Signal Process, 71:3607-3622.
[27]Ren H, Liu XY, Pan CH, et al., 2023. Performance analysis for RIS-aided secure massive MIMO systems with statistical CSI. IEEE Wirel Commun Lett, 12(1):124-128.
[28]Tang WK, Chen MZ, Chen XY, et al., 2021. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement. IEEE Trans Wirel Commun, 20(1):421-439.
[29]Wang JH, Wang HQ, Han Y, et al., 2021. Joint transmit beamforming and phase shift design for reconfigurable intelligent surface assisted MIMO systems. IEEE Trans Cogn Commun Netw, 7(2):354-368.
[30]Wang XH, Shu F, Chen RQ, et al., 2023. Beamforming design for RIS-aided amplify-and-forward relay networks. Front Inform Technol Electron Eng, 24(12):1728-1738.
[31]Wang ZR, Liu L, Cui SG, 2020. Channel estimation for intelligent reflecting surface assisted multiuser communications: framework, algorithms, and analysis. IEEE Trans Wirel Commun, 19(10):6607-6620.
[32]Wei XH, Dai LL, Zhao YJ, et al., 2022. Codebook design and beam training for extremely large-scale RIS: far-field or near-field? China Commun, 19(6):193-204.
[33]Xu DN, Han Y, Li X, et al., 2023. Energy efficiency optimization for a RIS-assisted multi-cell communication system based on a practical RIS power consumption model. Front Inform Technol Electron Eng, 24(12):1717-1727.
[34]Yang L, Meng FX, Zhang JY, et al., 2020a. On the performance of RIS-assisted dual-hop UAV communication systems. IEEE Trans Veh Technol, 69(9):10385-10390.
[35]Yang L, Yang JX, Xie WW, et al., 2020b. Secrecy performance analysis of RIS-aided wireless communication systems. IEEE Trans Veh Technol, 69(10):12296-12300.
[36]Yang L, Yang Y, da Costa DB, et al., 2021. Outage probability and capacity scaling law of multiple RIS-aided networks. IEEE Wirel Commun Lett, 10(2):256-260.
[37]Yang SJ, Lyu W, Xiu Y, et al., 2023. Active 3D double-RIS-aided multi-user communications: two-timescale-based separate channel estimation via Bayesian learning. IEEE Trans Commun, 71(6):3605-3620.
[38]Yu X, Shen WQ, Zhang R, et al., 2023. Channel estimation for XL-RIS-aided millimeter-wave systems. IEEE Trans Commun, 71(9):5519-5533.
[39]Zhang Q, Lu ZH, Jin S, et al., 2013. Power scaling of massive MIMO systems with arbitrary-rank channel means and imperfect CSI. IEEE Global Communications Conf, p.4157-4162.
[40]Zhang Y, 2023. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions. Front Inform Technol Electron Eng, 24(12):1669-1688.
[41]Zheng BX, You CS, Zhang R, 2021. Double-IRS assisted multi-user MIMO: cooperative passive beamforming design. IEEE Trans Wirel Commun, 20(7):4513-4526.
[42]Zhi KD, 2023. Two-Timescale Design for RIS-Aided Massive MIMO Systems. PhD Thesis, Queen Mary University of London, UK.
[43]Zhi KD, Pan CH, Ren H, et al., 2022a. Active RIS versus passive RIS: which is superior with the same power budget? IEEE Commun Lett, 26(5):1150-1154.
[44]Zhi KD, Pan CH, Ren H, et al., 2022b. Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI. IEEE Trans Commun, 70(5):3558-3574.
[45]Zhi KD, Pan CH, Ren H, et al., 2023. Two-timescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI. IEEE Trans Inform Theory, 69(5):3001-3033.
[46]Zhi KD, Pan CH, Ren H, et al., 2024. Performance analysis and low-complexity design for XL-MIMO with near-field spatial non-stationarities. IEEE J Sel Areas Commun, 42(6):1656-1672.
[47]Zhou G, Pan CH, Ren H, et al., 2022. Channel estimation for RIS-aided multiuser millimeter-wave systems. IEEE Trans Signal Process, 70:1478-1492.
[48]Zhou SQ, Xu W, Wang KZ, et al., 2020. Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments. IEEE Wirel Commun Lett, 9(9):1366-1369.
Open peer comments: Debate/Discuss/Question/Opinion
<1>