
CLC number: TP13
On-line Access: 2025-10-13
Received: 2025-01-16
Revision Accepted: 2025-05-19
Crosschecked: 2025-10-13
Cited: 0
Clicked: 692
Liqing WANG, Jiaming TANG, Mingkun WANG, Feiyu YANG. Passivity-based synchronous control of Markov jump systems with actuator saturation[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(9): 1711-1720.
@article{title="Passivity-based synchronous control of Markov jump systems with actuator saturation",
author="Liqing WANG, Jiaming TANG, Mingkun WANG, Feiyu YANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="9",
pages="1711-1720",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500039"
}
%0 Journal Article
%T Passivity-based synchronous control of Markov jump systems with actuator saturation
%A Liqing WANG
%A Jiaming TANG
%A Mingkun WANG
%A Feiyu YANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 9
%P 1711-1720
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500039
TY - JOUR
T1 - Passivity-based synchronous control of Markov jump systems with actuator saturation
A1 - Liqing WANG
A1 - Jiaming TANG
A1 - Mingkun WANG
A1 - Feiyu YANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 9
SP - 1711
EP - 1720
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500039
Abstract: In this article, the robust control problem of discrete-time markov jump systems (MJSs) with actuator saturation is investigated via the passivity theory. Under the assumption of mode synchronization between the system and the controller, sufficient conditions are established to guarantee the system to be mean-square stable and stochastically passive in the domain of attraction via the saturation-dependent Lyapunov function approach and the linear matrix inequality (LMI) technique. The coupling between the system variables is decoupled, which greatly facilitates the design of the synchronization controller. Moreover, the estimation of the domain of attraction for the considered MJSs is accomplished through the solution of an optimization problem (OP). By degenerating the mode-dependent controller into its mode-independent counterpart, we derive sufficient conditions to ensure system robustness under the mode-independent control strategy, and then systematically summarize these conditions. Finally, the effectiveness of the proposed integrated design methodology is validated through numerical simulations.
[1]Bolzern P, Colaneri P, De Nicolao G, 2014. Stochastic stability of positive Markov jump linear systems. Automatica, 50(4):1181-1187.
[2]Cao YY, Lin ZL, Shamash Y, 2002. Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation. Syst Contr Lett, 46(2):137-151.
[3]Chen GL, Sun J, Chen J, 2020. Passivity-based robust sampled-data control for Markovian jump systems. IEEE Trans Syst Man Cybern Syst, 50(7):2671-2684.
[4]Chen GL, Fan CC, Sun J, et al., 2022a. Mean square exponential stability analysis for Itô stochastic systems with aperiodic sampling and multiple time-delays. J. IEEE Trans Autom Contr, 67(5):2473-2480.
[5]Chen GL, Xia JW, Park JH, et al., 2022b. Sampled-data synchronization of stochastic Markovian jump neural networks with time-varying delay. IEEE Trans Neur Netw Learn Syst, 33(8):3829-3841.
[6]Chen GL, Du GX, Xia JW, et al., 2023. Controller synthesis of aperiodic sampled-data networked control system with application to interleaved flyback module integrated converter. IEEE Trans Circ Syst I Regul Pap, 70(11):4570-4580.
[7]Chen GL, Du GX, Xia JW, et al., 2024. Aperiodic sampled-data H∞ control of vehicle active suspension system: an uncertain discrete-time model approach. IEEE Trans Ind Inform, 20(4):6739-6750.
[8]Cheng P, Wang JC, He SP, et al., 2020. Observer-based asynchronous fault detection for conic-type nonlinear jumping systems and its application to separately excited DC motor. IEEE Trans Circ Syst I Regul Pap, 67(3):951-962.
[9]Cheng P, He SP, Cheng J, et al., 2021. Asynchronous output feedback control for a class of conic-type nonlinear hidden Markov jump systems within a finite-time interval. IEEE Trans Syst Man Cybern Syst, 51(12):7644-7651.
[10]Costa OLV, Marques RP, Fragoso MD, 2005. Discrete-Time Markov Jump Linear Systems. Springer London, UK.
[11]Feng ZG, Shi P, 2017. Sliding mode control of singular stochastic Markov jump systems. IEEE Trans Autom Contr, 62(8):4266-4273.
[12]Goncalves APC, Fioravanti AR, Geromel JC, 2009. H∞ filtering of discrete-time Markov jump linear systems through linear matrix inequalities. IEEE Trans Autom Contr, 54(6):1347-1351.
[13]Hu TS, Lin ZL, 2001. Control Systems with Actuator Saturation. Birkhäuser Boston MA, USA.
[14]Jiang YH, Wu W, Lou XY, et al., 2021. Event-based H∞ control for piecewise-affine systems subject to actuator saturation. Front Inform Technol Electron Eng, 22(5):720-731.
[15]Liu HP, Sun FC, Boukas EK, 2006. Robust control of uncertain discrete-time Markovian jump systems with actuator saturation. Int J Contr, 79(7):805-812.
[16]Ma SP, Zhang CH, 2012. H∞ control for discrete-time singular Markov jump systems subject to actuator saturation. J Franklin Inst, 349(3):1011-1029.
[17]Nie R, Du WL, Li ZM, et al., 2024. Finite-time consensus control for MASs under hidden Markov model mechanism. IEEE Trans Autom Contr, 69(7):4726-4733.
[18]Oliveira RCLF, Vargas AN, do Val JBR, et al., 2014. Mode-independent H2-control of a DC motor modeled as a Markov jump linear system. IEEE Trans Contr Syst Technol, 22(5):1915-1919.
[19]Pang Z, Wang H, Cheng J, et al., 2024. Stability and fuzzy optimal control for nonlinear Itô stochastic Markov jump systems via hybrid reinforcement learning. IEEE Trans Fuzzy Syst, 32(11):6472-6485.
[20]Tao YY, Wu ZG, 2024. Asynchronous static output-feedback control of Markovian jump linear systems. IEEE Trans Autom Contr, 69(4):2453-2460.
[21]Wang S, Wu ZG, 2022. Asynchronous control of uncertain Markov jump systems with actuator saturation. IEEE Trans Circ Syst II Express Briefs, 69(7):3269-3273.
[22]Wang S, Wu ZG, 2024. Asynchronous energy-to-peak filtering for restricted Markov jump systems. IEEE Trans Autom Contr, 69(5):2823-2838.
[23]Wang S, Wu ZG, Tao YY, 2023. Asynchronous H∞ control for continuous-time hidden Markov jump systems with actuator saturation. IEEE Trans Cybern, 53(11):7095-7104.
[24]Wang YJ, Sun YN, Zuo ZQ, et al., 2012. Robust H∞ control of discrete-time Markovian jump systems in the presence of incomplete knowledge of transition probabilities and saturating actuator. Int J Robust Nonl Contr, 22(15):1753-1764.
[25]Wang ZD, Ho DWC, Dong HL, et al., 2010. Robust H∞ finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations. IEEE Trans Autom Contr, 55(7):1716-1722.
[26]Wu YY, Cheng J, Zhou X, et al., 2021. Asynchronous filtering for nonhomogeneous Markov jumping systems with deception attacks. Appl Math Comput, 394:125790.
[27]Wu ZG, Shi P, Su HY, et al., 2014. Asynchronous filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica, 50(1):180-186.
[28]Wu ZG, Shi P, Shu Z, et al., 2017. Passivity-based asynchronous control for Markov jump systems. IEEE Trans Autom Contr, 62(4):2020-2025.
[29]Xu TS, Niu YG, Cao ZR, 2024. Attack-tolerant control for Markovian jump systems with stochastic sampling: a sliding mode scheme. Automatica, 161:111496.
[30]Xu Y, Wu ZG, Sun J, 2023. Security-based passivity analysis of Markov jump systems via asynchronous triggering control. IEEE Trans Cybern, 53(1):151-160.
[31]Zhang M, Shi P, Liu ZT, et al., 2018. Dissipativity-based asynchronous control of discrete-time Markov jump systems with mixed time delays. Int J Robust Nonl Contr, 28(6):2161-2171.
[32]Zhao XD, Zhang LX, Shi P, et al., 2012. Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans Autom Contr, 57(7):1809-1815.
Open peer comments: Debate/Discuss/Question/Opinion
<1>