Full Text:   <2>

CLC number: 

On-line Access: 2025-11-14

Received: 2025-03-04

Revision Accepted: 2025-06-16

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2025 Vol.8 No.6 P.930-947

http://doi.org/10.1631/bdm.2500091


Multilayered microfluidic platform for three-dimensional vascularized organ-on-a-chip applications


Author(s):  Chenyang Zhou (???), Zhangjie Li (???), Jiaqi Xu (???), Dingyuan Yu (???), Lian Xuan (??) & Xiaolin Wang (???)

Affiliation(s):  Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; more

Corresponding email(s):   xlwang83@sjtu.edu.cn

Key Words:  Microfluidics Multilayered Organ-on-a-chip Vascularization


Share this article to: More

Chenyang Zhou (???), Zhangjie Li (???), Jiaqi Xu (???), Dingyuan Yu (???), Lian Xuan (??) & Xiaolin Wang (???). Multilayered microfluidic platform for three-dimensional vascularized organ-on-a-chip applications[J]. Journal of Zhejiang University Science D, 2025, 8(6): 930-947.

@article{title="Multilayered microfluidic platform for three-dimensional vascularized organ-on-a-chip applications",
author="Chenyang Zhou (???), Zhangjie Li (???), Jiaqi Xu (???), Dingyuan Yu (???), Lian Xuan (??) & Xiaolin Wang (???)",
journal="Journal of Zhejiang University Science D",
volume="8",
number="6",
pages="930-947",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/bdm.2500091"
}

%0 Journal Article
%T Multilayered microfluidic platform for three-dimensional vascularized organ-on-a-chip applications
%A Chenyang Zhou (???)
%A Zhangjie Li (???)
%A Jiaqi Xu (???)
%A Dingyuan Yu (???)
%A Lian Xuan (??) & Xiaolin Wang (???)
%J Journal of Zhejiang University SCIENCE D
%V 8
%N 6
%P 930-947
%@ 1869-1951
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/bdm.2500091

TY - JOUR
T1 - Multilayered microfluidic platform for three-dimensional vascularized organ-on-a-chip applications
A1 - Chenyang Zhou (???)
A1 - Zhangjie Li (???)
A1 - Jiaqi Xu (???)
A1 - Dingyuan Yu (???)
A1 - Lian Xuan (??) & Xiaolin Wang (???)
J0 - Journal of Zhejiang University Science D
VL - 8
IS - 6
SP - 930
EP - 947
%@ 1869-1951
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/bdm.2500091


Abstract: 
The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body. In this study, we describe a multilayered microfluidic organ-on-a-chip platform designed for reproducing various three-dimensional (3D) vascularized microtissue models for bio logical applications. This platform utilizes a porous membrane as a physical barrier and leverages capillary action for hydro gel self-filling. Its high flow resistance mitigates the risk of gel bursting into the medium channels and facilitates the delivery of substances to generate a wide range of interstitial flow and biochemical factor concentration gradients. This study demon strated that this platform can be used to accurately replicate 3D microenvironments for vasculogenesis, angiogenesis, and vascularized tumor modeling. We also investigated the critical role of multiple microenvironmental regulations in vascular formation on a chip. Moreover, we reproduced the process of tumor angiogenesis, including primary solid tumor features and the inhibitory effects of antitumor drugs on tumor growth and tumor vasculature before and after angiogenesis. Hence, our multilayered microfluidic platform is valuable for exploring multiple vascular mechanisms and constructing specific mi crotissues that closely mimic in vivo physiological conditions, providing new strategies for cancer research. Furthermore, the multilayered configuration improves design flexibility and scalability, providing the potential for a multi-organ intercon nected platform for high-throughput drug screening.

用于三维血管化器官芯片应用的多层微流控平台

作者:周晨阳1,李彰杰1,徐家琪1,喻鼎渊1,轩连2,王晓林1,2,3 机构:1上海交通大学电子信息与电气工程学院微纳电子学系,中国上海市,200240;2上海交通大学医疗机器人研究院,中国上海市,200240;3上海交通大学微米纳米加工技术全国重点实验室,中国上海市,200240 目的:血管网络在各种组织的发展和代谢过程中起着至关重要的作用。本研究旨在提出一种多层微流控器官芯片平台,用于构建多种三维血管化微组织模型,并系统性研究微环境参数对血管形成的影响机制,为血管生物学和癌症研究提供新策略。 创新点:提出了一种多层微流控器官芯片平台,可用于构建多种三维血管化微组织模型。该平台采用多孔膜作为物理屏障,并利用毛细管作用实现水凝胶的自主填充。其高流体阻力可防止凝胶破裂,同时有利于物质传递,形成间质流速和生化因子浓度梯度。多层结构设计提高了系统的设计灵活性以及可扩展性,适用于构建多器官互联平台和高通量药物筛选。 方法:开发了基于多孔膜和毛细管作用的多层微流控器官芯片平台。利用该平台精确模拟血管生成、血管新生以及血管化肿瘤的三维微环境。特别地,在平台上重建了原发性实体瘤特征模型,并通过比较给药前后肿瘤血管的变化,研究了抗肿瘤药物对肿瘤生长和血管生成的抑制作用。 结论:本研究所开发的多层微流控平台可用于精确模拟多种血管化微组织的三维微环境。研究结果成功重建了原发性实体瘤特征模型,并揭示了抗肿瘤药物对肿瘤生长以及血管生成的抑制作用。该平台不仅为血管生物学机制和构建体内相关微组织模型提供了重要价值,也为癌症研究提供了新策略。
关键词:微流控;多层;器官芯片;血管化;肿瘤微环境;药物筛选

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE