Full Text:   <2988>

CLC number: Q943.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 3

Clicked: 6223

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2003 Vol.4 No.3 P.331-335

http://doi.org/10.1631/jzus.2003.0331


Cloning and characterization of a glucose 6-phosphate/phosphate translocator from Oryza sativa


Author(s):  JIANG Hua-wu, DIAN Wei-min, LIU Fei-yan, WU Ping

Affiliation(s):  The State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310029, China

Corresponding email(s):   docpwu@cls.zju.edu.cn

Key Words:  Glucose 6-phosphate/phosphate translocator, Starch synthesis, Rice (Oryza sativa L.)


Share this article to: More


Abstract: 
Plastids of nongreen tissues import carbon as a source of biosynthetic pathways and energy, and glucose 6-phosphate is the preferred hexose phosphate taken up by nongreen plastids. A cDNA clone encoding glucose 6-phosphate/phosphate translocator (GPT) was isolated from a cDNA library of immature seeds of rice and named as OsGPT. The cDNA has one uninterrupted open reading frame encoding a 42 kDa polypeptide possessing transit peptide consisting of 70 amino acid residues. The OsGPT gene maps on chromosome 8 of rice and is linked to the quantitative trait locus for 1000-grain weight. The expression of OsGPT is mainly restricted to heterotrophic tissues. These results suggest that glucose 6-phosphate imported via GPT can be used for starch biosynthesis in rice nongreen plastids.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE