CLC number: O152
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4964
LI Yang-ming. A characteristic condition of finite nilpotent group[J]. Journal of Zhejiang University Science A, 2004, 5(7): 749-753.
@article{title="A characteristic condition of finite nilpotent group",
author="LI Yang-ming",
journal="Journal of Zhejiang University Science A",
volume="5",
number="7",
pages="749-753",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0749"
}
%0 Journal Article
%T A characteristic condition of finite nilpotent group
%A LI Yang-ming
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 7
%P 749-753
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0749
TY - JOUR
T1 - A characteristic condition of finite nilpotent group
A1 - LI Yang-ming
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 7
SP - 749
EP - 753
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0749
Abstract: This paper gives a characteristic condition of finite nilpotent group under the assumption that all minimal subgroups of G are well-suited in G.
[1] Asaad, M., Ballester-Bolinches, A., Pedraza Aguilera, M.C., 1996. A note on minimal subgroups of finite groups.Comm. in Algebra,24:2771-2776.
[2] Asaad, M., Heliel, A.A., 2003. On permutable subgroups of finite groups.Arch. Math.,80:113-118.
[3] Doerk, K., Hawkes, T.O., 1992. Finite Soluble Groups. De Gruyter, Berlin.
[4] Gorenstein, D., 1982. Finite Simple Groups. Plenum Press, New York, London.
[5] Huppert, B., 1968. Endliche Gruppen I. Springer-Verlag, Berlin.
[6] Huppert, B., Blackburn, N., 1982. Finite Groups III. Springer-Verlag, New York, Berlin.
[7] Kegel, O.H., 1962. Sylow-Gruppen und aubnormalteiler endlicher Gruppen.Math. Z.,78:205-221.
[8] Li, Y.M., Wang, Y.M., 2003. The influence of minimal subgroups on the structure of a finite group.Proc. AMS,131(2):337-341.
[9] Ore, O., 1937. Structures of group theory.Duke Math J.,3:149-174.
[10] Wang, Y., Li, Y., Wang, J., 2003. Finite groups with C-supplemented minimal subgroups.Algebra Collo-quium,10(3):413-425.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
SMAEIL@GG<SMAEILHOSSEINI25@YAHOO.COM>
2010-12-05 13:43:51
HI
Please send this journal for me
thanks