CLC number: R54
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 16
Clicked: 5788
YU Min, WANG Xing-xiang, ZHANG Fu-rong, SHANG Yun-peng, DU Yu-xi, CHEN Hong-juan, CHEN Jun-zhu. Proteomic analysis of the serum in patients with idiopathic pulmonary arterial hypertension[J]. Journal of Zhejiang University Science B, 2007, 8(4): 221-227.
@article{title="Proteomic analysis of the serum in patients with idiopathic pulmonary arterial hypertension",
author="YU Min, WANG Xing-xiang, ZHANG Fu-rong, SHANG Yun-peng, DU Yu-xi, CHEN Hong-juan, CHEN Jun-zhu",
journal="Journal of Zhejiang University Science B",
volume="8",
number="4",
pages="221-227",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.B0221"
}
%0 Journal Article
%T Proteomic analysis of the serum in patients with idiopathic pulmonary arterial hypertension
%A YU Min
%A WANG Xing-xiang
%A ZHANG Fu-rong
%A SHANG Yun-peng
%A DU Yu-xi
%A CHEN Hong-juan
%A CHEN Jun-zhu
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 4
%P 221-227
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0221
TY - JOUR
T1 - Proteomic analysis of the serum in patients with idiopathic pulmonary arterial hypertension
A1 - YU Min
A1 - WANG Xing-xiang
A1 - ZHANG Fu-rong
A1 - SHANG Yun-peng
A1 - DU Yu-xi
A1 - CHEN Hong-juan
A1 - CHEN Jun-zhu
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 4
SP - 221
EP - 227
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0221
Abstract: idiopathic pulmonary arterial hypertension (IPAH) is a rare disease of unknown etiology. The exact pathogenesis of pulmonary arterial hypertension is still not well known. In the past decades, many protein molecules have been found to be involved in the development of IPAH. With proteomic techniques, profiling of human plasma proteome becomes more feasible in searching for disease-related markers. In present study, we showed the protein expression profiles of the serum of IPAH and healthy controls after depleting a few high-abundant proteins in serum. Thirteen spots had changed significantly in IPAH compared with healthy controls and were identified by LC-MS/MS. Alpha-1-antitrypsin and vitronectin were down-regulated in IPAH and may be valuable candidates for further explorations of their roles in the development of IPAH.
[1] Abdul-Salam, V.B., Paul, G.A., Ali, J.O., Gibbs, S.R., Rahman, D., Taylor, G.W., Wilkins, M.R., Edwards, R.J., 2006. Identification of plasma protein biomarkers associated with idiopathic pulmonary arterial hypertension. Proteomics, 6(7):2286-2294.
[2] Anderson, N.L., Anderson, N.G., 2002. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics, 1(11):845-867.
[3] Arrell, D.K., Elliott, S.T., Kane, L.A., Guo, Y., Ko, Y.H., Pedersen, P.L., Robinson, J., Murata, M., Murphy, A.M., Marban, E., van Eyk, J.E., 2006. Proteomic analysis of pharmacological preconditioning: novel protein targets converge to mitochondrial metabolism pathways. Circ. Res., 99(7):706-714.
[4] Bezstarosti, K., Das, S., Lamers, J.M., Das, D.K., 2006. Differential proteomic profiling to study the mechanism of cardiac pharmacological preconditioning by resveratrol. J. Cell Mol. Med., 10(4):896-907.
[5] Brantly, M., Nukiwa, T., Crystal, R.G., 1988. Molecular basis of alpha-1-antitrypsin deficiency. Am. J. Med., 84(6A):13-31.
[6] Cowan, K.N., Heilbut, A., Humpl, T., Lam, C., Ito, S., Rabinovitch, M., 2000. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat. Med., 6(6):698-702.
[7] Deng, Z.M., Morse, J.H., Slager, S.L., Cuervo, N., Moore, K.J., Venetos, G., Kalachikov, S., Cayanis, E., Fischer, S.G., Barst, R.J., Hodge, S.E., Knowles, J.A., 2000. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet., 67(3):737-744.
[8] Echan, L.A., Tang, H.Y., Ali-Khan, N., Lee, K., Speicher, D.W., 2005. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics, 5(13):3292-3303.
[9] Fay, W.P., Parker, A.C., Ansari, M.N., Zheng, X.X., Ginsburg, D., 1999. Vitronectin inhibits the thrombotic response to arterial injury in mice. Blood, 93(6):1825-1830.
[10] Gallego-Delgado, J., Lazaro, A., Osende, J.I., Esteban, V., Barderas, M.G., Gomez-Guerrero, C., Vega, R., Vivanco, F., Egido, J., 2006. Proteomic analysis of early left ventricular hypertrophy secondary to hypertension: modulation by antihypertensive therapies. J. Am. Soc. Nephrol., 17(12 Suppl. 3):S159-164.
[11] Giaid, A., Saleh, D., 1995. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med., 333(4):214-221.
[12] Huber, K., Beckmann, R., Frank, H., Kneussl, M., Mlczoch, J., Binder, B.R., 1994. Fibrinogen, t-PA, and PAI-1 plasma levels in patients with pulmonary hypertension. Am. J. Respir. Crit. Care Med., 150(4):929-933.
[13] Humbert, M., Sitbon, O., Simonneau, G., 2004. Treatment of pulmonary artery hypertension. N. Engl. J. Med., 351(14):1425-1436.
[14] Lane, K.B., Machado, R.D., Pauciulo, M.W., Thomson, J.R., Phillips, J.A., Loyd, J.E., Nichols, W.C., Trembath, R.C., 2000. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension: the international PPH consortium. Nat. Genet., 26(1):81-84.
[15] Li, H., Xiao, Y.B., Gao, Y.Q., Yang, T.D., 2006. Comparative proteomics analysis of differentially expressed phosphoproteins in adult rat ventricular myocytes subjected to diazoxide preconditioning. Drug Metabol. Drug Interact., 21(3-4):245-258.
[16] Lomas, D.A., Mahadeva, R., 2002. Alpha 1-antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J. Clin. Invest., 110(11):1585-1590.
[17] Machado, R.D., Pauciulo, M.W., Thomson, J.R., Lane, K.B., Morgan, N.V., Wheeler, L., Phillips, J.A., Newman, J., Williams, D., Galie, N., et al., 2001. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am. J. Hum. Genet., 68(1):92-102.
[18] Mayasundari, A., Whittemore, N.A., Serpersu, E.H., Peterson, C.B., 2004. The solution structure of the N-terminal domain of human vitronectin. J. Biol. Chem., 279(28):29359-29366.
[19] Napoli, C., Loscalzo, J., 2004. Nitric oxide and other novel therapies for pulmonary hypertension. J. Cardiovasc. Pharmacol. Ther., 9(1):1-8.
[20] Okano, T., Kondo, T., Kakisaka, T., Fujii, K., Yamada, M., Kato, H., Nishimura, T., Gemma, A., Kudoh, S., Hirohashi, S., 2006. Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis. Proteomics, 6(13):3938-3948.
[21] Petrache, I., Fijalkowska, I., Medler, T.R., Skirball, J., Cruz, P., Zhen, L., Petrache, H.I., Flotte, T.R., Tuder, R.M., 2006. Alpha-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol., 169(4):1155-1166.
[22] Pieper, R., Gatlin, C.L., Makusky, A.J., Russo, P.S., Schatz, C.R., Miller, S.S., Su, Q., McGrath, A.M., Estock, M.A., Parmar, P.P., et al., 2003. The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics, 3(7):1345-1364.
[23] Preissner, K.T., Seiffert, D., 1998. Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb. Res., 89(1):1-21.
[24] Price, D.T., Loscalzo, J., 1999. Cellular adhesion molecules and atherogenesis. Am. J. Med., 107(1):85-97.
[25] Reheman, A., Gross, P., Yang, H., Chen, P., Allen, D., Leytin, V., Freedman, J., Ni, H., 2005. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. J. Thromb. Haemost., 3(5):875-883.
[26] Teichert-Kuliszewska, K., Kutryk, M.J.B., Kuliszewski, M.A., Karoubi, G., Courtman, D.W., Zucco, L., Granton, J., Stewart, D.J., 2006. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival. Circ. Res., 98(2):209-217.
[27] Teixeira, P.C., Iwai, L.K., Kuramoto, A.C., Honorato, R., Fiorelli, A., Stolf, N., Kalil, J., Cunha-Neto, E., 2006. Proteomic inventory of myocardial proteins from patients with chronic Chagas’ cardiomyopathy. Braz. J. Med. Biol. Res., 39(12):1549-1562.
[28] Tomasini, B.R., Mosher, D.F., 1990. Vitronectin. Prog. Hemostas. Thromb., 10(2):269-305.
[29] Tuder, R.M., Cool, C.D., Yeager, M., Taraseviciene-Stewart, L., Bull, T.M., Voelkel, N.E., 2001. The pathobiology of pulmonary hypertension. Endothelium. Clin. Chest Med., 22(3):405-418.
[30] Zhao, Y.D., Courtman, D.W., Deng, Y.P., Kugathasan, L., Zhang, Q.W., Stewart, D.J., 2005. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells. Efficacy of combined cell and eNOS gene therapy in established disease. Circ. Res., 96(4):442-450.
[31] Zhuang, P., Blackburn, M.N., Peterson, C.B., 1996. Characterization of the denaturation and renaturation of human plasma vitronectin: I. Biophysical characterization of protein unfolding and multimerization. J. Biol. Chem., 271(24):14323-14332.
Open peer comments: Debate/Discuss/Question/Opinion
<1>