CLC number: X505
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 6171
Xing-wang ZHANG, Le-cheng LEI. Development of supported boron-doping TiO2 catalysts by chemical vapor deposition[J]. Journal of Zhejiang University Science A, 2008, 9(1): 109-112.
@article{title="Development of supported boron-doping TiO2 catalysts by chemical vapor deposition",
author="Xing-wang ZHANG, Le-cheng LEI",
journal="Journal of Zhejiang University Science A",
volume="9",
number="1",
pages="109-112",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A073022"
}
%0 Journal Article
%T Development of supported boron-doping TiO2 catalysts by chemical vapor deposition
%A Xing-wang ZHANG
%A Le-cheng LEI
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 1
%P 109-112
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A073022
TY - JOUR
T1 - Development of supported boron-doping TiO2 catalysts by chemical vapor deposition
A1 - Xing-wang ZHANG
A1 - Le-cheng LEI
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 1
SP - 109
EP - 112
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A073022
Abstract: In this study, supported nonmetal (boron) doping tiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of tiO2. boron atoms were successfully doped into the lattice of tiO2 through CVD, as evidenced from XPS analysis. B-doped tiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-tiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure tiO2 photocatalyst.
[1] Ding, Z, Hu, X.J, Yue, P.L, Lu, G.Q, Greenfield, P.F., 2000. Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir, 16(15):6216-6222.
[2] Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L., Patrik, S., 2006. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Letters, 6(5):1080-1082.
[3] Harris, S.J., Krauss, G.G., Simko, S.J., Baird, R.J., Gebremariam, S.A., Doll, G., 2002. Abrasion and chemical-mechanical polishing between steel and a sputtered boron carbide coating. Wear, 252(1-2):161-169.
[4] Lu, G., Bernasek, S.L., Schwartz, J., 2000. Oxidation of a polycrystalline titanium surface by oxygen and water. Surface Science, 458(1-3):80-90.
[5] Lu, Y.H., Zhou, Z.F., Zhou, P., Sit, Y.G., Shen, K.Y., Li, K.Y., Chen, H., 2004. X-ray photoelectron spectroscopy characterization of reactively sputtered Ti-B-N thin films. Surface and Coatings Technology, 187(1):98-105.
[6] Moon, S.C., Mametsuka, H., Tabata, S., Suzuli, E., 2000. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catalysis Today, 58(2-3):125-132.
[7] Peill, N.J, Hoffmann, M.R., 1996. Chemical and physical characterization of a TiO2-coated fiber optic cable reactor. Environmental Science & Technology, 30(9):2806-2812.
[8] Vitiello, R.P., Macak, J.M., Ghicov, A., Tsuchiya, H., Dick, L.F.P., Schmuki, P., 2006. N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochemistry Communications, 8(4):544-548.
[9] Zhao, W., Ma, W.H., Chen, C.C., Zhao, J.C., Shuai, Z.G., 2004. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−xBx under visible irradiation. Journal of American Chemical Society, 126(15):4782-4783.
Open peer comments: Debate/Discuss/Question/Opinion
<1>