CLC number: U448.25
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-03-30
Cited: 8
Clicked: 7521
Hao Wang, Ke-guan Zou, Ai-qun Li, Chang-ke Jiao. Parameter effects on the dynamic characteristics of a super-long-span triple-tower suspension bridge[J]. Journal of Zhejiang University Science A, 2010, 11(5): 305-316.
@article{title="Parameter effects on the dynamic characteristics of a super-long-span triple-tower suspension bridge",
author="Hao Wang, Ke-guan Zou, Ai-qun Li, Chang-ke Jiao",
journal="Journal of Zhejiang University Science A",
volume="11",
number="5",
pages="305-316",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0900496"
}
%0 Journal Article
%T Parameter effects on the dynamic characteristics of a super-long-span triple-tower suspension bridge
%A Hao Wang
%A Ke-guan Zou
%A Ai-qun Li
%A Chang-ke Jiao
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 5
%P 305-316
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0900496
TY - JOUR
T1 - Parameter effects on the dynamic characteristics of a super-long-span triple-tower suspension bridge
A1 - Hao Wang
A1 - Ke-guan Zou
A1 - Ai-qun Li
A1 - Chang-ke Jiao
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 5
SP - 305
EP - 316
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0900496
Abstract: A 3D finite element model for the Taizhou Yangtze River Bridge, the first triple-tower long-span suspension bridge in China, is established based on the nonlinear finite element software ABAQUS, and the dynamic characteristics of the bridge are analyzed using the LANCZOS eigenvalue solution method. The study focuses on the effects of the vertical, lateral and torsional stiffness of the steel box girder, the rigid central buckle and the elastic restraints connecting the towers and the steel box girder on the dynamic characteristics of the triple-tower suspension bridge. Our results show that, in general, the dynamic characteristics of the triple-tower suspension bridge are similar to those of two-tower suspension bridges. The vertical, lateral and torsional stiffness of the steel box girder have different effects on the dynamic characteristics of triple-tower suspension bridges. The elastic restraints have a more significant effect on the dynamic characteristics than the central buckle, and decreasing the stiffness of the elastic restraints results in the appearance of a longitudinal floating vibration mode of the bridge. Also, rigid central buckles have a greater influence on the dynamic characteristics of triple-tower suspension bridges than on those of two-tower suspension bridges. The results obtained could serve as a valuable numerical reference for analyzing and designing super-long-span triple-tower suspension bridges.
[1]Abdel-Ghaffar, A.M., 2000. Vibration studies and tests of a suspension bridge. Computers & Structures, 76(6):787-797.
[2]Almutairi, N.B., Hassan, M.F., Abdel-Rohman, M., Terro, M., 2006. Control of suspension bridge nonlinear vibrations due to moving loads. Journal of Engineering Mechanics, ASCE, 132(6):659-670.
[3]Bartoli, G., Mannini, C., 2008. A simplified approach to bridge deck flutter. Journal of Wind Engineering and Industrial Aerodynamics, 96(2):229-256.
[4]Chen, X., Kareem, A., 2006. Revisiting multimode coupled bridge flutter: some new insights. Journal of Engineering Mechanics, ASCE, 132(10):1115-1123.
[5]Chen, X.Z., 2006. Analysis of long span bridge response to winds: building nexus between flutter and buffeting. Journal of Structural Engineering, ASCE, 132(12):2006-2017.
[6]Cheng, J., Jiang, J.J., Xiao, R.C., Xiang, H.F., 2003. Series method for analyzing 3D nonlinear torsional divergence of suspension bridges. Computers & Structures, 81(5):299-308.
[7]Deng, Y.L., Peng, T.B., Li, J.Z., Ji, L., 2008. Study on dynamic characteristic and aseismic performance of a long-span triple-tower suspension bridge. Journal of Vibration and Shock, 27(9):105-110 (in Chinese).
[8]Ding, Q.S., Lee, P.K.K., 1999. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computers & Structures, 71(4):397-412.
[9]Dischinger, F., 1949. Hängebrücken für schwerste Verkehrslasten (I and II). Der Bauingenieur, 24(3):65-75, 107-113 (in German).
[10]Ernst, H.J., 1965. Der e-modul von seilen unter berücksichtigung des durchhanges. Der Bauingenieur, 40(2):52-55 (in German).
[11]Hua, X.G., Chen, Z.Q., 2008. Full-order and multimode flutter analysis using ANSYS. Finite Elements in Analysis and Design, 44(9-10):537-551.
[12]Karoumi, R., 2007. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Computers & Structures, 71(4):397-412.
[13]Kazama, K., Yamada, H., Miyata, T., 1995. Wind resistant design for long span suspension bridges. Journal of Wind Engineering and Industrial Aerodynamics, 54-55:65-74.
[14]Li, G.H., 1996. Stability and Vibration of Bridge Structure. China Railway Publishing House, Beijing, China (in Chinese).
[15]Lin, L.X., Wu, Y.P., Ding, N.H., 2007. Influence of structure parameters on natural vibration characteristics of double-cable suspension bridge. Journal of the China Railway Society, 29(4):91-95 (in Chinese).
[16]Maceri, F., Vairo, G., 2003. Flutter Instability of Long-span Suspension Bridges: a Simplified Critical Wind Speed Evaluation in Closed Form. Proceedings in Applied Mathematics and Mechanics (PAMM), 3(1):116-117.
[17]Maceri, F., Vairo, G., 2004. Modelling and Simulation of Long-span Bridges under Aerodynamic Loads. Novel Approaches in Civil Engineering, Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, Berlin, 14:359-376.
[18]Ochsendorf, A.O., Billington, D.P., 1999. Self-anchored suspension bridges. Journal of Bridge Engineering, ASCE, 4(3):151-156.
[19]Romeijn, A., Sarkhosh, R., van Goolen, D., 2008. Parametric study on static behaviour of self-anchored suspension bridges. International Journal of Steel Structures, 8(2):91-108.
[20]Sun, S.J., Liu, S.W., 2007. Dynamic characteristics and parameter analysis of super-long span suspension bridges. Highway, 11:41-45 (in Chinese).
[21]Wang, H., Li, A.Q., Yang, Y.D., Li, J.H., 2006. Influence of central buckle on dynamic behavior of long-span suspension bridge. China Journal of Highway and Transport, 19(6):49-53 (in Chinese).
[22]Wang, H., Li, A.Q., Guo, T., 2009. Accurate stress analysis on rigid central buckle of long-span suspension bridges based on submodel method. Science in China Series E Technological Sciences, 52(4):1019-1026.
[23]Xia, H., Guo, W.W., Zhang, N., Sun, G.J., 2008. Dynamic analysis of a train-bridge system under wind action. Computers & Structures, 86(19-20):1845-1855.
[24]Xu, Y.L., Liu, T.T., Zhang, W.S., 2009. Buffeting-induced fatigue damage assessment of a long suspension bridge. International Journal of Fatigue, 31(3):575-586.
[25]Yoshida, O., Okuda, M., Moriya, T., 2004. Structural characteristics and applicability of four-span suspension bridge. Journal of Bridge Engineering, ASCE, 9(5):453-463.
[26]Zhang, Q.W., Feng, M.Y., 2004. Dynamic analysis of self-anchored concrete suspension bridge. Journal of Tongji University, 32(12):1562-1566 (in Chinese).
[27]Zhang, X.J., Xiang, H.F., Sun, B.N., 2002. Nonlinear aerostatic and aerodynamic analysis of long-span suspension bridges considering wind-structure interactions. Journal of Wind Engineering and Industrial Aerodynamics, 90(9):1065-1080.
Open peer comments: Debate/Discuss/Question/Opinion
<1>