CLC number: TN92
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-11-11
Cited: 1
Clicked: 4944
Xian-yi RUI. Average SNR of maximum ratio transmission with selection combining[J]. Journal of Zhejiang University Science A, 2009, 10(12): 1683-1687.
@article{title="Average SNR of maximum ratio transmission with selection combining",
author="Xian-yi RUI",
journal="Journal of Zhejiang University Science A",
volume="10",
number="12",
pages="1683-1687",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0920451"
}
%0 Journal Article
%T Average SNR of maximum ratio transmission with selection combining
%A Xian-yi RUI
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 12
%P 1683-1687
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0920451
TY - JOUR
T1 - Average SNR of maximum ratio transmission with selection combining
A1 - Xian-yi RUI
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 12
SP - 1683
EP - 1687
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0920451
Abstract: Two kinds of selection combining schemes including generalized selection combining (GSC) and generalized order selection combining (GOSC) are investigated. In the GSC scheme, L strongest diversity branches from a total of R diversity branches are selected and coherently combined by maximal ratio combining. GOSC means that the Lth strongest diversity branch from R diversity branches is selected for reception. Closed-form expressions for the average signal-to-noise ratios of maximum ratio transmission with GSC and GOSC are derived in rayleigh fading channels.
[1] Alouini, M.S., Simon, M.K., 2000. An MGF-based performance analysis of generalized selection combining over Rayleigh fading channels. IEEE Trans. Commun., 48(3):401-415.
[2] Chen, Y., Tellambura, C., 2005. Performance analysis of maximum ratio transmission with imperfect channel estimation. IEEE Commun. Lett. 9(4):322-324.
[3] David, H.A., 1981. Order Statistics (2nd Ed.). Wiley, New York, p.9-20.
[4] Dighe, P.A., Mallik, R.K., Jamuar, S.S., 2003. Analysis of transmit-receive diversity in Rayleigh fading. IEEE Trans. Commun., 51(4):694-703.
[5] Kang, M., Alouini, M.S., 2004. A comparative study on the performance of MIMO MRC systems with and without cochannel interference. IEEE Trans. Commun., 52(8):1417-1425.
[6] Kwan, R., Leung, C., 2007. General order selection combining for Nakagami and Weibull fading channels. IEEE Trans. Wirel. Commun., 6(6):2027-2033.
[7] Lo, T.K.Y., 1999. Maximum ratio transmission. IEEE Trans. Commun., 47(10):1458-1461.
[8] Ma, Y., Pasupathy, S., 2004. Efficient performance evaluation for generalized selection combining on generalized fading channels. IEEE Trans. Wirel. Commun., 3(1):29-34.
[9] Ma, Y., Zhang, D., 2006. Generalized Selection Multiuser Scheduling with Channel Estimation Errors. IEEE Conf. on Global Communications, p.1-5.
[10] Ma, Y., Dong, X., Yang, H.C., 2009. Asymptotic performance of threshold-based generalized selection combining. IEEE Trans. Veh. Technol., 58(5):2579-2585.
[11] Maaref, A., Aissa, S., 2007. Eigenvalue distributions of Wishart-type random matrices with application to the performance analysis of MIMO MRC systems. IEEE Trans. Wirel. Commun., 6(7):2678-2689.
[12] Maaref, A., Aissa, S., 2009. Optimized rate-adaptive PSAM for MIMO MRC systems with transmit and receive CSI imperfections. IEEE Trans. Commun., 57(3):821-830.
[13] Rui, X., Jin, R., Geng, J., 2007. Performance analysis of MIMO MRC systems in the presence of self-interference and co-channel interferences. IEEE Signal Processing Lett., 14(11):801-803.
[14] Theofilakos, P., Kanatas, A.G., Efthymoglou, G.P., 2008. Performance of generalized selection combining receivers in K fading channels. IEEE Commun. Lett., 12(11):816-818.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Wanghuifang<hfwangzju@gmail.com>
2010-08-16 12:00:03
OK.