Full Text:   <3166>

CLC number: O347.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2010-09-12

Cited: 1

Clicked: 5306

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2010 Vol.11 No.10 P.817-821

http://doi.org/10.1631/jzus.A1000139


Effect of the geometric shapes of specimens on impact tensile tests


Author(s):  Wei-fang Xu, Xi-cheng Huang, Zhi-ming Hao, Yang Wang, Yuan-ming Xia

Affiliation(s):  Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China, Institute of Structural Mechanics, China Academy of Engineering Physics, Mianyang 621900, China

Corresponding email(s):   xuwf@caep.ac.cn

Key Words:  Impact tensile, Split Hopkinson tensile bar (SHTB), Length-to-diameter (L/D) ratios


Wei-fang Xu, Xi-cheng Huang, Zhi-ming Hao, Yang Wang, Yuan-ming Xia. Effect of the geometric shapes of specimens on impact tensile tests[J]. Journal of Zhejiang University Science A, 2010, 11(10): 817-821.

@article{title="Effect of the geometric shapes of specimens on impact tensile tests",
author="Wei-fang Xu, Xi-cheng Huang, Zhi-ming Hao, Yang Wang, Yuan-ming Xia",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="817-821",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000139"
}

%0 Journal Article
%T Effect of the geometric shapes of specimens on impact tensile tests
%A Wei-fang Xu
%A Xi-cheng Huang
%A Zhi-ming Hao
%A Yang Wang
%A Yuan-ming Xia
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 817-821
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000139

TY - JOUR
T1 - Effect of the geometric shapes of specimens on impact tensile tests
A1 - Wei-fang Xu
A1 - Xi-cheng Huang
A1 - Zhi-ming Hao
A1 - Yang Wang
A1 - Yuan-ming Xia
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 817
EP - 821
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000139


Abstract: 
The geometric shapes of specimens are important in impact tensile tests because geometric shapes determine the stress states of the specimens, and precise geometric shapes can obtain proper material properties without non-material factors. The aim of this study was to investigate the 1D form of the stress by changing the length-to-diameter (L/D) ratios of specimens. The experiments were carried out on a split Hopkinson tensile bar (SHTB)—rotating disk indirect bar-bar tensile impact apparatus. The L/D ratios of the LY12CZ specimens used in the test ranged from 1 to 5. Results show that the specimens can be used to obtain exact parameters of materials under the proposed conditions when the L/D ratio is greater than 2. This is because the longer length will reduce or eliminate the effects of the interfaces.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Gao, Y.H., 1994. Dynamic compression and tensile properties of Al alloys LC4 and LY12CZ at high strain rate. Material Science and Technology, 2(2):24-29.

[2]Harding, J., Welsh, L.M., 1983. A tensile testing technique for fiber reinforced composite at impact rates of strain. Journal of Materials Science, 18(6):1810-1826.

[3]Haugou, G., Markiewicz, E., Fabis, J., 2006. On the use of the non direct tensile loading on a classical split Hopkinson bar apparatus dedicated to sheet metal specimen characterization. International Journal of Impact Engineering, 32(5):778-798.

[4]Naik, N.K., Yernamma, P., Thoram, N.M., Gadipatri, R., Kavala, V.R., 2010. High strain rate tensile behavior of woven fabric E-glass/epoxy composite. Polymer Testing, 29(1):14-22.

[5]Nicholas, T., 1981. Tensile testing of materials at high strain rates. Experimental Mechanics, 21(5):177-185.

[6]Raisch, S.R., Möginger, B., 2010. High rate tensile tests— Measuring equipment and evaluation. Polymer Testing, 29(2):265-272.

[7]Staab, G.H., Gilat, A., 1991. A direct-tension split-Hopkinson bar for high strain rate testing. Experimental Mechanics, 31(3):232-235.

[8]Wang, C.Y., Xia, Y.M., 1996. Two-dimensional finite element analysis of elastic wave propagation in cylindrical bars with interfaces. Journal of University of Science and Technology of China, 26:64-69 (in Chinese).

[9]Wang, C.Y., Xia, Y.M., 2000. Validity of one-dimensional experimental measuring principle for flat specimen in bar-bar tensile impact apparatus. International Journal of Solids and Structures, 37(24):3305-3322.

[10]Wang, C.Y., Wan, H.P., Xia, Y.M., 1999. A two-dimensional axially-symmetric numerical analysis of a bar-bar tensile impact apparatus by elastoplastic FEM. Journal of Sound and Vibration, 220(5):787-806.

[11]Wang, Y., Zhou, Y.X., Xia, Y.M., 2004. A constitutive description of tensile behavior for brass over a wide range of strain rates. Materials Science and Engineering: A, 372(1-2):186-190. [doi:10.1016/j.msea.2003.12.009]

[12]Xia, Y.M., Yuan, J.M., Yang, B.C., 1991. The simplified dynamic system analysis of the pendulum impact tensile test apparatus of bock-bar. Acta Mech Sinica, 23(2):217-223 (in Chinese).

[13]Xu, W.F., 2002. Impact Tensile Experimental Technique and Its Application on Magnesuim-Aluminium Alloy. MS Thesis, China Academy of Engineering Physics, China (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE