CLC number: O368; S157.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-02-28
Cited: 1
Clicked: 6782
Zhuo-dong Zhang, Ralf Wieland, Matthias Reiche, Roger Funk, Carsten Hoffmann, Yong Li, Michael Sommer. A computational fluid dynamics model for wind simulation: model implementation and experimental validation[J]. Journal of Zhejiang University Science A, 2012, 13(4): 274-283.
@article{title="A computational fluid dynamics model for wind simulation: model implementation and experimental validation",
author="Zhuo-dong Zhang, Ralf Wieland, Matthias Reiche, Roger Funk, Carsten Hoffmann, Yong Li, Michael Sommer",
journal="Journal of Zhejiang University Science A",
volume="13",
number="4",
pages="274-283",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100231"
}
%0 Journal Article
%T A computational fluid dynamics model for wind simulation: model implementation and experimental validation
%A Zhuo-dong Zhang
%A Ralf Wieland
%A Matthias Reiche
%A Roger Funk
%A Carsten Hoffmann
%A Yong Li
%A Michael Sommer
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 4
%P 274-283
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100231
TY - JOUR
T1 - A computational fluid dynamics model for wind simulation: model implementation and experimental validation
A1 - Zhuo-dong Zhang
A1 - Ralf Wieland
A1 - Matthias Reiche
A1 - Roger Funk
A1 - Carsten Hoffmann
A1 - Yong Li
A1 - Michael Sommer
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 4
SP - 274
EP - 283
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100231
Abstract: To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stokes equations, and it is freely available as open source. Integrated with the spatial analysis and modelling tool (SAMT), the wind model has convenient input preparation and powerful output visualization. To validate the wind model, a series of experiments was conducted in a wind tunnel. A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes. A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field. Results show that measured and simulated wind fields have high correlations, and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field. These results show the high reliability of the wind model. A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region, China) was applied to the model, and a 3D wind field has been successfully generated. The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale.
[1]Alhajraf, S., 2004. Computational fluid dynamic modelling of drifting particles at porous fences. Environmental Modelling & Software, 19(2):163-170.
[2]Badr, T., Harion, J.L., 2005. Numerical modelling of flow over stockpiles: Implications on dust emissions. Atmospheric Environment, 39(30):5576-5584.
[3]Gao, X., Huo, W., Luo, Z.Y., Cen, K.F., 2008. CFD simulation with enhancement factor of sulfur dioxide absorption in the spray scrubber. Journal of Zhejiang University-SCIENCE A, 9(11):1601-1613.
[4]Gill, T.E., Shao, Y.P., 2004. Introduction: Modelling of wind erosion and aeolian processes. Environmental Modelling & Software, 19(2):91-92.
[5]Gray, G.A., Kolda, T.G., 2006. Algorithm 856: APPSPACK 4.0: Asynchronous parallel pattern search for derivative-free optimization. ACM Transactions on Mathematical Software, 32(3):485-507.
[6]Griffin, J.D., Kolda, T.G., 2006. Asynchronous Parallel Generating Set Search for Linear-Constrained Optimization. Technical Report, Sandia National Laboratories, Livermore.
[7]Hoffmann, C., Wieland, R., Funk, R., 2007. Mapping the Soil Erodibility of a Grazing Area in Inner Mongolia Using a Fuzzy Development Tool (SAMT). In: Wittmann, J., Wohlgemuth, V. (Eds.), Simulation in Umwelt-und Geowissenschaften: Workshop Berlin. Aachen (Shaker), p.71-80 (in German).
[8]Hoffmann, C., Funk, R., Wieland, R., Li, Y., Sommer, M., 2008. Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. Journal of Arid Environments, 72(5):792-807.
[9]Hussein, A.S., El-Shishiny, H., 2009. Influences of wind flow over heritage sites: A case study of the wind environment over the Giza Plateau in Egypt. Environmental Modelling & Software, 24(3):389-410.
[10]Kolda, T.G., 2005. Revisiting asynchronous parallel pattern search for nonlinear optimization. SIAM Journal of Optimization, 16(2):563-586.
[11]Liu, C.H., Leung, D.Y.C., Man, A.C.S, Chan, P.W., 2010. Computational fluid dynamics simulation of the wind flow over an airport terminal building. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 11(6):389-401.
[12]Mirschel, W., Wieland, R., Voss, M., Ajibefun, I.A., Deumlich, D., 2006. Spatial analysis and modelling tool (SAMT): 2. Applications. Ecological Informatics, 1(1):77-85.
[13]Parsons, D.R., Wiggs, G.F.S., Walker, I.J., Ferguson, R.I., Garvey, B.G., 2004a. Numerical modelling of airflow over an idealised transverse dune. Environmental Modelling & Software, 19(2):153-162.
[14]Parsons, D.R., Walker, I.J., Wiggs, G.F.S., 2004b. Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry. Geomorphology, 59(1-4):149-164.
[15]Ross, A.N., Arnold, S., Vosper, S.B., Mobbs, S.D., Dixon, N., Robins, A.G., 2004. A comparison of wind-tunnel experiments and numerical simulations of neutral and stratified flow over a hill. Boundary-Layer Meteorology, 113(3):427-459.
[16]Seleznev, V., 2007. Numerical simulation of a gas pipeline network using computational fluid dynamics simulators. Journal of Zhejiang University-SCIENCE A, 8(5):755-765.
[17]Shi, F., Huang, N., 2010. Computational simulations of blown sand fluxes over the surfaces of complex microtopography. Environmental Modelling & Software, 25(3):362-367.
[18]Solazzo, E., Cai, X.M., Vardoulakis, S., 2009. Improved parameterisation for the numerical modelling of air pollution within an urban street canyon. Environmental Modelling & Software, 24(3):381-388.
[19]Stam, J., 2003. Real-Time Fluid Dynamics for Games. Proceedings of the Game Developer Conference. Available from: http://www.dgp.toronto.edu/~stam/reality/Research/pub.html [Accessed on Oct. 16, 2008].
[20]Wakes, S.J., Maegli, T., Dickinson, K.J., Hilton, M.J., 2010. Numerical modelling of wind flow over a complex topography. Environmental Modelling & Software, 25(2):237-247. [doi:10.1016/j.envsoft.2009.08.003]
[21]Wieland, R., Voss, M., Holtmann, X., Mirschel, W., Ajibefun, I.A., 2006. Spatial analysis and modelling tool (SAMT): 1. Structure and possibilities. Ecological Informatics, 1(1):67-76.
[22]Wieland, R., Mirschel, W., Wenkel, K.O., 2007. Spatial Analysis and Modelling Tool V2.0–System Design. In: Gnauck, A. (Ed.), Modellierung und Simulation von Oekosystemen: Workshop Koelpinsee. Aachen (Shaker), p.78-96 (in German).
[23]Yang, Y., Shao, Y.P., 2008. Numerical simulations of flow and pollution dispersion in urban atmospheric boundary layers. Environmental Modelling & Software, 23(7):906-921. [doi:10.1016/j.envsoft.2007.10.005]
[24]Youssef, F., Visser, S., Karssenberg, D., Bruggeman, A., Erpul, G., 2012. Calibration of RWEQ in a patchy landscape; a first step towards a regional scale wind erosion model. Aeolian Research, 3(4):467-476.
[25]Zhang, Z.D., Wieland, R., Reiche, M., Funk, R., Hoffmann, C., Li, Y., Sommer, M., 2011. Wind modelling for wind erosion research by open source computational fluid dynamics. Ecological Informatics, 6(5):316-324.
[26]Zobeck, T.M., Parker, N.C., Haskell, S., Guoding, K., 2000. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agriculture Ecosystems & Environment, 82(1-3):247-259.
Open peer comments: Debate/Discuss/Question/Opinion
<1>