References
[1] Amar, I.A., Petit, C.T.G., Zhang, L., Lan, R., Skabara, P.J., Tao, S., 2011. Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovs-kite cathode.
Solid State Ionics, 201(1):94-100.
[2] Baqu, L., Caneiro, A., Moreno, M.S., Serquis, A., 2008. High performance nanostructured IT-SOFC cathodes prepared by novel chemical method.
Electrochemistry Communications, 10(12):1905-1908.
[3] Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y., 2010. Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC electrophoretic deposition (EPD).
Journal of the European Ceramic Society, 30(5):1187-1193.
[4] Chang, Y.C., Lee, M.C., Kao, W.X., Wang, C.H., Lin, T.N., Chang, J.C., 2011. Fabrication and evaluation of electrochemical characteristics of the composite cathode layers for the anode-supported solid-oxide fuel cells.
Journal of the Taiwan Institute of Chemical Engineers, 42(5):775-782.
[5] Chen, J., Liang, F., Liu, L., Jiang, S., Chi, B., Pu, J., Li, J., 2008. Nano-structured (La,Sr)(Co,Fe)O
3+YSZ composite cathodes for intermediate temperature solid oxide fuel cells.
Journal of Power Sources, 183(2):586-589.
[6] Chen, J., Liang, F., Yan, D., Pu, J., Chi, B., Jiang, S.P., Jian, L., 2010. Performance of large-scale anode-supported solid oxide fuel cells with impregnated La
0.6Sr
0.4Co
0.2Fe
0.8O
3−i
+Y
2O
3 stabilized ZrO
2 composite cathodes.
Journal of Power Sources, 195(16):5201-5205.
[7] DiGiuseppe, G., Li, S., 2011. Electrochemical performance of solid oxide fuel cell with an LSCF cathode under different oxygen concentrations.
International Journal of Hydrogen Energy, 36(8):5076-5087.
[8] Dusastre, V., Kilner, J.A., 1999. Optimisation of composite cathodes for intermediate temperature SOFC applications.
Solid State Ionics, 126(1-2):163-174.
[9] Dutta, A., Mukhopadhyay, J., Basu, R.N., 2009. Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells.
Journal of European Ceramic Society, 29(10):2003-2011.
[10] Fan, B., Liu, X., 2009. A-deficit LSCF for intermediate temperature solid oxide fuel cells.
Solid State Ionics, 180(14-16):973-977.
[11] Fan, B., Yan, J., Yan, X., 2011. The ionic conductivity, thermal expansion behavior, and chemical compatibility of La
0.54Sr
0.44Co
0.2Fe
0.8O
3-d
as SOFC cathode material.
Solid State Ionics, 13:1835-1839.
[12] Fergus, J.W., Hui, R., Li, X., 2009. Solid Oxide Fuel Cells Materials Properties and Performance. CRC Press,New York :
[13] Fu, C., Sun, K., Zhang, N., Chen, X., Zhou, D., 2007. Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC.
Electrochimica Acta, 52(13):4589-4594.
[14] Ghouse, M., Al-Yousef, Y., Al-Musa, A., Al-Otaibi, M.F., 2010. Preparation of La
0.6Sr
0.4Co
0.2Fe
0.8O
3 nanoceramic cathode for solid oxide fuel cell (SOFC) application.
Journal of Hydrogen Energy, 35(17):9411-9419.
[15] Guo, W., Liu, J., Jin, C., Gao, H., Zhang, Y., 2009. Electrochemical evaluation of La
0.6Sr
0.4Co
0.8Fe
0.2O
3−i
–La
0.9Sr
0.1Ga
0.8Mg
0.2O
3−i
composite cathodes for La
0.9Sr
0.1Ga
0.8Mg
0.2O
3−i
electrolyte SOFCs.
Journal of Alloy and Compounds, 473(1-2):43-47.
[16] Huang, B., Qi, Y., Murshed, M., 2011. Solid oxide fuel cell: Perspective of dynamic modeling and control.
Journal of Process Control, 21(10):1426-1437.
[17] Huang, T.J., Chou, C.L., 2009. Feasibility of simultaneous NO reduction and electricity generation in SOFCs with V
2O
5 or Cu added LSCF-GDC cathodes.
Electrochemistry Communications, 11(2):477-480.
[18] Huang, T.J., Chou, C.L., 2010. Effect of voltage and temperature on NO removal with power generation in SOFC with V
2O
5-added LSCF-GDC cathode.
Chemical Engineering Journal, 160(1):79-84.
[19] Izuki, M., Brito, M.E., Yamaji, K., Kishimoto, H., Cho, D.Y., Shimonosono, T., Horita, T., Yokokawa, H., 2011. Interfacial stability and cation diffusion across the LSCF/GDC interface.
Journal of Power Sources, 196(17):7232-7236.
[20] Jadhav, L.D., Pawar, S.H., Chourashiya, M.G., 2007. Effect of sintering temperature on structural and electrical properties of gadolinium doped ceria (Ce
0.9Gd
0.1O
19.5).
Bulletin of Materials Science, 30(2):97-100.
[21] Jarot, R., Muchtar, A., Wan Daud, W.R., Muhamad, N., Majlan, E.H., 2011. Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cell (SOFC) applications.
Key Engineering Materials, 471-472:179-184.
[22] Jarot, R., Muchtar, A., Wan Daud, W.R., 2011. La
0.6Sr
0.4Co
0.2Fe
0.8O
3-δ
-based Cathodes for SDC-Carbonate Composite.
, 3rd International Conference on Fuel Cell & Hydrogen Technology, A13:A13
[23] Jiang, S.P., 2002. A comparison of O
2 reduction reactions on porous (La,Sr)MnO
3 and (La,Sr)(Co,Fe)O
3 electrodes.
Solid State Ionics, 146(1-2):1-22.
[24] Jiang, S.P., 2006. A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells.
Materials Science and Engineering A, 418(1-2):199-210.
[25] Jiang, Z., Xia, C., Chen, F., 2010. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique.
Electrochimica Acta, 55(11):3595-3605.
[26] Kawada, T., Yokokawa, H., 1997. Material and characterization of solid oxide fuel cell.
Key Engineering Materials, 125-126:187-248.
[27] Ke, K., Gunji, A., Mori, H., Tsuchida, S., Takahashi, H., Ukai, K., Mizutani, Y., Sumi, H., Yokoyama, M., Waki, K., 2006. Effect of oxide on carbon deposition behavior of CH
4 fuel on Ni/ScSZ cermet anode in high temperature SOFC.
Solid State Ionics, 177(5-6):541-547.
[28] Kuharuangrong, S., 2004. Effects of Ni on the electrical conductivity and microstructure of La
0.82Sr
0.16MnO
3
.
Ceramics International, 30(2):273-277.
[29] Lee, H.W., Liu, Z., Yang, L., Abernathy, H., Choi, S.H., Kim, H.E., Liu, M., 2009. Preparation of dense and uniform La
0.6Sr
0.4Co
0.2Fe
0.8O
3-δ
(LSCF) films for fundamental studies of SOFC cathodes.
Journal of Power Sources, 190(2):307-310.
[30] Lee, S., Song, H.S., Hyun, S.H., Kim, J., Moon, J., 2010. LSCF-SDC core-shell high-performance durable composite cathode.
Journal of Power Sources, 195(1):118-123.
[31] Leng, Y.J., Chan, S.H., Jiang, S.P., Khor, K.A., 2004. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction.
Solid State Ionics, 170(1-2):9-15.
[32] Leng, Y.J., Chan, S.H., Liu, Q., 2008. Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte.
International Journal of Hydrogen Energy, 33(14):3808-3817.
[33] Li, S., Sun, X.L., Wen, Z.S., Sun, J.C., 2006. A new candidate as the cathode material for intermediate and low temperature SOFCs.
Rare Metals, 25:213-217.
[34] Li, Z., Mori, T., Aucheterlonie, G.J., Zou, J., Drennan, J., Miyayama, M., 2011. Diffusion and segregation along grain boundary at the electrolyte-anode interface in IT-SOFC.
Solid State Ionics, 191(1):55-60.
[35] Lin, Y., Barnett, S.A., 2008. La
0.9Sr
0.1Ga
0.8Mg
0.2O
3−δ
-La
0.6Sr
0.4Co
0.2Fe
0.8O
3−θ
composite cathodes for intermediate-temperature solid oxide fuel cells.
Solid State Ionics, 179(11-12):420-427.
[36] Liu, J., Anne, C.C., Paulson, S., Birss, V.I., 2006. Oxygen reduction at sol-gel derived La
0.8Sr
0.2Co
0.8Fe
0.2O
3 cathodes.
Solid State Ionics, 177(3-4):377-387.
[37] Liu, Y., Hashimoto, S., Nishino, H., Takei, K., Mori, M., 2007. Fabrication and characterization of a co-fired La
0.6Sr
0.4Co
0.2Fe
0.8O
3−δ
cathode-supported Ce
0.9Gd
0.1O
1.95 thin-film for IT-SOFCs.
Journal of Power Sources, 164(1):56-64.
[38] Mai, A., Haanappel, V.A.C., Uhlenbruck, S., Tietz, F., Stover, D., 2005. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part I. Variation of composition.
Solid State Ionics, 176(15-16):1341-1350.
[39] Mai, A., Becker, M., Assenmacher, W., Tietz, F., Hathiramani, D., Ivers-Tiffe, E., Stver, D., Mader, W., 2006. Time-dependent performance of mixed-conducting SOFC cathodes.
Solid State Ionics, 177(19-25):1965-1968.
[40] Menzler, N.H., Tietz, F., 2010. Materials and manufacturing technologies for solid oxide fuel cells.
Journal of Materials Science, 45(12):3109-3135.
[41] Minh, N.Q., 2004. Solid oxide fuel cells technology features and application.
Solid State Ionics, 174(1-4):271-277.
[42] Murray, E.P., Sever, M.J., Barnett, S.A., 2002. Electrochemical performance of (La,Sr)(Co,Fe)O
3–(Ce,Gd)O
3 composite cathodes.
Solid State Ionics, 148(1-2):27-34.
[43] Nie, L., Liu, M., Zhang, Y., Liu, M., 2010. La
0.6Sr
0.4Co
0.2Fe
0.8O
3−d
cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells.
Journal of Power Sources, 195(15):4704-4708.
[44] Nie, L., Liu, Z., Liu, M., Yang, L., Zhang, Y., Liu, M., 2010. Enhanced performance of La
0.6Sr
0.4Co
0.2Fe
0.8O
3−δ
(LSCF) cathodes with graded microstructure fabricated by tape casting.
Journal of Electrochemical Science and Technology, 1(1):50-56.
[45] Nielsen, J., Jacobsen, T., Wandel, M., 2011. Impedance of porous IT-SOFC LSCF: CGO composite cathodes.
Electrochimica Acta, 56(23):7963-7974.
[46] Qiang, F., Sun, K.N., Zhang, N.Q., Zhu, X.D., Le, S.R., Zhou, D.R., 2007. Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy.
Journal of Power Sources, 168(2):338-345.
[47] Rahman, H.A., Muchtar, A., Muhamad, N., Abdullah, H., 2011. Fabrication and characterisation of La
0.6Sr
0.4Co
0.2Fe
0.8O
3−d
-SDC composite cathode.
Key Engineering Materials, 471-472:268-273.
[48] Rahman, H.A., Muchtar, A., Muhamad, N., Abdullah, H., 2012. Structure and thermal properties of La
0.6Sr
0.4Co
0.2Fe
0.8O
3-d
-SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells.
Ceramics International, 38(2):1571-1576.
[49] Serra, J.M., Uhlenbruck, S., Meulenberg, W.A., Buchkremer, H.P., Stver, D., 2006. Nano-structuring of solid oxide fuel cells cathodes.
Topics in Catalysis, 40(1-4):123-131.
[50] Shah, M., Barnett, S.A., 2008. Solid oxide fuel cell cathodes by infiltration of La
0.6Sr
0.4Co
0.2Fe
0.8O
3−δ
into Gd-doped ceria.
Solid State Ionics, 179(35-36):2059-2064.
[51] Sillassen, M., Eklund, P., Pryds, N., Bonanos, N., Bottiger, J., 2010. Concentration-dependent ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline scandia-stabilized zirconia.
Solid State Ionics, 181(23-24):1140-1145.
[52] Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt, K.D., Shelton, J.P., Sprenkle, V.L., Stevenson, J.W., 2003. Development of lanthanum ferrite SOFC cathodes.
Journal of Power Sources, 113(1):1-10.
[53] Singh, K., Acharya, S.A., Bhoga, S.S., 2006. Nanosized ceria-based ceramics: a comparative study.
Ionics, 12(4-5):295-301.
[54] Steven, S.C., 2005. Catalysis of solid oxide fuel cells.
Catalysis, 18:186-198.
[55] Sun, C., Hui, R., Roller, J., 2010. Cathode materials for solid oxide fuel cells: a review.
Journal of Solid State Electrochemistry, 14(7):1125-1144.
[56] Thomas, E., Ehrman, S.H., Hwang, H.J., 2009. Synthesis of LaSrCrO Nano Powder by Glycine Nitrate Process. PowerMEMS,Washington DC, USA :471-474.
[57] Tietz, F., Haanappel, V.A.C., Mai, A., Mertens, J., Stver, D., 2006. Performance of LSCF cathodes in cell test.
Journal of Power Sources, 156(1):20-22.
[58] Tietz, F., Mai, A., Stver, D., 2008. From powder properties to fuel cell performance—A holistic approach for SOFC cathode development.
Solid State Ionics, 179(27-32):1509-1515.
[59] Timakul, P., 2004.
Fabrication of Electrolyte Material for Solid Oxide Fuel Cells by Tape-Casting Technique, MS Thesis, Chulalongkorn University :
[60] Timurkultuk, B., 2007.
Performance Analysis of an Intermediate Temperature Solid Oxide Fuel Cell, MS Thesis, Middle East Technical University :
[61] Viswanathan, B., Scibioh, M.A., 2007.
Fuel Cells: Principles and Applications, Universities Press, CRC Press,:
[62] Wang, W.G., Mogensen, M., 2005. High-performance lanthanum-ferrite-based cathode for SOFC.
Solid State Ionics, 176(5-6):457-462.
[63] William, J.D., 2001.
SOFC Materials Technology Development in Support of SECA, SECA Core Technology Workshop,:1-26.
[64] Yamamoto, O., 2000. Solid oxide fuel cells: fundamental aspects and prospects.
Electrochimica Acta, 45(15-16):2423-2435.
[65] Zha, S., Cheng, J., Fu, Q., Meng, G., 2003. Ceramic fuel cells based on ceria-carbonate salt composite electrolyte.
Materials Chemistry and Physics, 77(2):594-597.
[66] Zhang, J., Ji, Y., Gao, H., He, T., Liu, J., 2005. Composite cathode La
0.6Sr
0.4Co
0.2Fe
0.8O
3-Sm
0.1Ce
0.9O
1.95-Ag for intermediate-temperature solid oxide fuel cells.
Journal of Alloys and Compounds, 395(1-2):322-325.
[67] Zhao, Y., Xiong, D.B., Qin, H., Gao, F., Inui, H., Zhu, B., 2011. Nanocomposite electrode materials for low temperature solid oxide fuel cells using the ceria-carbonate composite electrolytes.
International Journal of Hydrogen Energy, 37(24):19351-19356.
[68] Zhu, B., 2003. Functional ceria-salt-composite materials for advanced ITSOFC applications.
Journal of Power Sources, 114(1):1-9.
[69] Zuo, N., Zhang, M., Xie, F., Wang, C., Liu, Z., Mao, Z., 2012. Fabrication and characterization of anode support low-temperature solid oxide fuel cell based on the samaria-doped ceria electrolyte.
International Journal of Hydrogen Energy, 37(1):797-801.
Open peer comments: Debate/Discuss/Question/Opinion
<1>