Full Text:   <3536>

CLC number: TH122

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-05-16

Cited: 4

Clicked: 5410

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.6 P.383-392

http://doi.org/10.1631/jzus.A1300004


Material selection combined with optimal structural design for mechanical parts*


Author(s):  Le-miao Qiu, Liang-feng Sun, Xiao-jian Liu, Shu-you Zhang

Affiliation(s):  . State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   tjslf@163.com

Key Words:  Green design, Structure optimization, Material selection, Environmental performance index


Share this article to: More |Next Article >>>

Le-miao Qiu, Liang-feng Sun, Xiao-jian Liu, Shu-you Zhang. Material selection combined with optimal structural design for mechanical parts[J]. Journal of Zhejiang University Science A, 2013, 14(6): 383-392.

@article{title="Material selection combined with optimal structural design for mechanical parts",
author="Le-miao Qiu, Liang-feng Sun, Xiao-jian Liu, Shu-you Zhang",
journal="Journal of Zhejiang University Science A",
volume="14",
number="6",
pages="383-392",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300004"
}

%0 Journal Article
%T Material selection combined with optimal structural design for mechanical parts
%A Le-miao Qiu
%A Liang-feng Sun
%A Xiao-jian Liu
%A Shu-you Zhang
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 6
%P 383-392
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300004

TY - JOUR
T1 - Material selection combined with optimal structural design for mechanical parts
A1 - Le-miao Qiu
A1 - Liang-feng Sun
A1 - Xiao-jian Liu
A1 - Shu-you Zhang
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 6
SP - 383
EP - 392
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300004


Abstract: 
To reduce the environmental impact of mechanical parts, an approach integrating structural design and material selection was studied. Adding the discrete variable of material, a hybrid optimization model was built with the aim of minimizing environmental impact and based on an ordinary structure optimization model. An optional material set was built by combining measures of qualitative and quantitative screening, while the lifecycle environmental impact of the materials was quantified using the method of Eco-indicator 99. Two groups of structurally optimal solutions were calculated with ideal and negative-ideal materials selected respectively, and then the hybrid model was simplified by comparing the solutions. A material environmental performance index was calculated using an analytic method. By comparing this index for every material in the optional material set, the optimal material can be found and the structural solutions calculated. This method was applied to a dowel bar design process as a case study. The results show that the environmental impact of each material has a significant effect on the optimal structural solution, and it is necessary to study the integration of structural design and material selection.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Almeida, C.M.V.B., Rodrigues, A.J.M., Bonilla, S.H., Giannetti, B.F., 2010. Emergy as a tool for Ecodesign: evaluating materials selection for beverage packages in Brazil. Journal of Cleaner Production, 18(1):32-43. 


[2] Amen, R., Vomacka, P., 2001. Case-based reasoning as a tool for materials selection. Materials & Design, 22(5):353-358. 


[3] Ashby, M.F., 2000. Multi-objective optimization in material design and selection. Acta Materialia, 48(1):359-369. 


[4] Ashby, M.F., Johnson, K.W., 2002.  Material and Design: the Art and Science of Material Selection in Product Design. Butterworth-Heinemann,Oxford, UK :

[5] Byrne, C.L., 2013. Alternating minimization as sequential unconstrained minimization: A survey. Journal of Optimization Theory and Applications, 156(3):554-566. 


[6] Chu, C.H., Luh, Y.P., Li, T.C., Chen, H., 2009. Economical green product design based on simplified computer-aided product structure variation. Computers in Industry, 60(7):485-500. 


[7] Deng, Y.M., Edwards, K.L., 2007. The role of materials identification and selection in engineering design. Materials & Design, 28(1):131-139. 


[8] Hambali, A., Sapuan, S.M., Ismail, N., Nukman, Y., 2010. Materials selection of polymeric composite automotive bumper beam using analytical hierarchy process. Journal of Central South University of Technology, 17(2):244-256. 


[9] Holloway, L., 1998. Materials selection for optimal environmental impact in mechanical design. Materials & Design, 19(4):133-143. 


[10] Huang, H.H., Liu, Z.F., Zhang, L., Sutherland, J.W., 2009. Materials selection for environmentally conscious design via a proposed life cycle environmental performance index. The International Journal of Advanced Manufacturing Technology, 44(11-12):1073-1082. 


[11] Jahan, A., Ismail, M.Y., Mustapha, F., Sapuan, S.M., 2010. Material selection based on ordinal data. Materials & Design, 31(7):3180-3187. 


[12] Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., Bahraminasab, M., 2011. A comprehensive VIKOR method for material selection. Materials & Design, 32(3):1215-1221. 


[13] Khabbaz, R.S., Manshadi, B.D., Abedian, A., Mahmudi, R., 2009. A simplified fuzzy logic approach for materials se-lection in mechanical engineering design. Materials & Design, 30(3):687-697. 


[14] Kurk, F., Eagan, P., 2008. The value of adding design-for-the-environment to pollution prevention assistance options. Journal of Cleaner Production, 16(6):722-726. 


[15] Natalia, S.E., Maria, B.G.C., Prabhu, V.K., 2004. Material selection for an automotive structure by integrating structural optimization with environmental impact assessment. Materials & Design, 25(8):689-698. 


[16] Natalia, S.E., Kirill, G.K., Jan, L.S., 2002. Materials selection combined with optimal structural design: concept and some results. Materials & Design, 23(5):459-470. 


[17] Nagy, A.P., Abdalla, M.M., Gurdal, Z., 2010. Isogeometric sizing and shape optimisation of beam structures. Computer Methods in Applied Mechanics and Engineering, 199(17-20):1216-1230. 


[18] Peter, W.C., Anders, K., 2009.  An Introduction to Structural Optimization. Springer Verlag,Berlin Heidelberg :

[19] Rao, R.V., 2007.  Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods. Springer Verlag,London :

[20] Rao, R.V., Davim, J.P., 2008. A decision-making framework model for material selection using a combined multiple attribute decision-making method. The International Journal of Advanced Manufacturing Technology, 35(7-8):751-760. 


[21] Rao, R.V., Patel, B.K., 2010. A subjective and objective integrated multiple attribute decision making method for mat-erial selection. Materials & Design, 31(10):4738-4747. 


[22] Ribeiro, I., Pecas, P., Silva, A., Henriques, E., 2008. Life cycle engineering methodology applied to material selection, a fender case study. Journal of Cleaner Production, 16(17):1887-1899. 


[23] Rydh, C.J., Sun, M., 2005. Life cycle inventory data for materials grouped according to environmental and material properties. Journal of Cleaner Production, 13(13-14):1258-1268. 


[24] Sapuan, S.M., 2001. A knowledge-based system for materials selection in mechanical engineering design. Materials & Design, 22(8):687-695. 


[25] Sapuan, S.M., Abdalla, H.S., 1998. A prototype knowledge-based system for the material selection of polymeric-based composites for automotive components. Composites Part A: Applied Science and Manufacturing, 29(7):731-742. 


[26] Song, X., Baldwin, J.D., 1999. A novel node-based structural shape optimization algorithm. Computers & Structures, 70(5):569-581. 


[27] Sun, M., Rydh, C.J., Kaebernick, H., 2003. Material grouping for simplified product life cycle assessment. The Journal of Sustainable Product Design, 3(1-2):45-58. 


[28] Wall, W.A., Frenzel, M.A., Cyron, C., 2008. Isogeometric str-uctural shape optimization. Computer Methods in Applied Mechanics and Engineering, 197(33-40):2976-2988. 


[29] Weaver, P.M., Ashby, M.F., Burgess, S., Shibaike, N., 1996. Selection of materials to reduce environmental impact: a case study on refrigerator insulation. Materials & Design, 17(1):11-17. 


[30] Zha, X.F., 2005. A web-based advisory system for process and material selection in concurrent product design for a manufacturing environment. The International Journal of Advanced Manufacturing Technology, 25(3-4):233-243. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE