Full Text:   <4622>

Summary:  <2726>

CLC number: TH13

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-12-20

Cited: 5

Clicked: 10535

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.1 P.39-52

http://doi.org/10.1631/jzus.A1300230


Numerical analysis of a nonlinear double disc rotor-seal system*


Author(s):  Wen-jie Zhou1, Xue-song Wei1, Xian-zhu Wei2, Le-qin Wang1

Affiliation(s):  1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zhouwenjiezwj@zju.edu.cn

Key Words:  Nonlinear, Rotor-seal system, Finite element method (FEM), Fluid excitation


Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang. Numerical analysis of a nonlinear double disc rotor-seal system[J]. Journal of Zhejiang University Science A, 2014, 15(1): 39-52.

@article{title="Numerical analysis of a nonlinear double disc rotor-seal system",
author="Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang",
journal="Journal of Zhejiang University Science A",
volume="15",
number="1",
pages="39-52",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300230"
}

%0 Journal Article
%T Numerical analysis of a nonlinear double disc rotor-seal system
%A Wen-jie Zhou
%A Xue-song Wei
%A Xian-zhu Wei
%A Le-qin Wang
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 1
%P 39-52
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300230

TY - JOUR
T1 - Numerical analysis of a nonlinear double disc rotor-seal system
A1 - Wen-jie Zhou
A1 - Xue-song Wei
A1 - Xian-zhu Wei
A1 - Le-qin Wang
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 1
SP - 39
EP - 52
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300230


Abstract: 
Based on the finite element method (FEM) and the Lagrange equation, a novel nonlinear model of a double disc rotor-seal system, including the coupled effects of the gravity force of the discs, Muszynska’s nonlinear seal fluid dynamic force, and the mass eccentricity of the discs, is proposed. The fourth order Runge-Kutta method is applied to solve the motion equations of the system and numerically determine the vibration response of the center of the discs. The dynamic behavior of the system is analyzed using bifurcation diagrams, time-history diagrams, axis orbit diagrams, Poincaré maps, and amplitude spectrums. With the rotor speed increasing, the system presents rich forms including periodic, multi-periodic, quasi-periodic, and chaotic motion. We also discuss the effects of the distance between the two discs, the mass of the discs, seal clearance, seal length, and seal drop pressure on the dynamic behavior of the system. The numerical results demonstrate that a symmetrical disc structure, small disc mass, proper seal clearance, long seal length and high seal drop pressure can enhance the stability of a double disc rotor-seal system. The results provide a theoretical foundation for the design of multi-stage sealing systems.

非线性双圆盘转子-密封系统的数值分析

研究目的:求解双圆盘转子-密封系统的非线性振动特性和运动响应
创新方法:采用有限元法(FEM)和拉格朗日方程求解双圆盘转子-密封系统,进而为研究多级转子系统的非线性振动问题提供有效方法。
研究手段:基于有限元法(FEM)和拉格朗日方程,得到包含Muszynska非线性密封流体力和圆盘重力作用下的双圆盘转子-密封系统的运动方程。同时利用四阶龙格-库塔法求解系统动特性运动响应情况,利用分岔图、时间历程图、轴心轨迹图、庞加莱映射和幅值谱等分析图研究双圆盘转子-密封系统的非线性振动特性。
重要结论:随着转速的增大,双圆盘转子-密封系统呈现丰富的非线性运动形式,包括周期性运动、多周期运动、准周期运动以及混沌运动。在右端圆盘不平衡质量小于34 kg、密封间隙范围为0.376 mm–0.54 mm、密封长度大于0.13 m或者密封压差高于0.104 MPa的情况下均有利于提高双圆盘转子-密封系统的稳定性。

关键词:非线性;转子-密封系统;有限元法;流体激励

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Childs, D.W., 1983. Dynamic analysis of turbulent annular seals based on Hirs’ lubrication equation. Journal of Lubrication Technology, 105(3):429-436. 


[2] Childs, D.W., Graviss, M., Rodriguez, L.E., 2007. Influence of groove size on the static and rotordynamic characteristics of short, laminar-flow annular seals. , Joint Tribology Conference of the Society of Tribologists and Lubrication Engineers, American Society Mechanical Engineers, San Antonio, TX. ASME, New York, USA, 422-429. :422-429. 


[3] Ding, Q., Cooper, J.E., Leung, A.Y.T., 2002. Hopf bifurcation analysis of a rotor/seal system. Journal of Sound and Vibration, 252(5):817-833. 


[4] Fei, Z.X., Tong, S.G., Wei, C., 2013. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(4):268-280. 


[5] Hua, J., Swaddiwudhipong, S., Liu, Z.S., 2005. Numerical analysis of nonlinear rotor-seal system. Journal of Sound and Vibration, 283(3-5):525-542. 


[6] Kaneko, S., Ikeda, T., Saito, T., 2003. Experimental study on static and dynamic characteristics of liquid annular convergent-tapered damper seals with honeycomb roughness pattern. Journal of Tribology, 125(3):592-599. 


[7] Li, S.T., Xu, Q.Y., Zhang, X.L., 2007. Nonlinear dynamic behaviors of a rotor-labyrinth seal system. Nonlinear Dynamics, 47(7):321-329. 


[8] Li, W., Yang, Y., Sheng, D.R., 2011. Nonlinear dynamic analysis of a rotor/bearing/seal system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(1):46-55. 


[9] Megerle, B., Rice, T.S., McBean, I., 2013. Numerical and experimental investigation of the aerodynamic excitation of a model low-pressure steam turbine stage operating under low volume flow. Journal of Engineering for Gas Turbines and Power, 135(1):012602


[10] Muszynska, A., 1988. Improvements in lightly loaded rotor/bearing and rotor/seal models. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 110(2):129-136. 


[11] Muszynska, A., Bently, D.E., 1990. Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines. Journal of Sound and Vibration, 143(1):103-124. 


[12] Nelson, H.D., McVaugh, J.M., 1976. The dynamics of rotor-bearing systems using finite elements. Journal of Engineering for Industry, 98(2):593-600. 


[13] Noah, S.T., Sundararajan, P., 1995. Significance of considering nonlinear effects in predicting the dynamic behavior of rotating machinery. Journal of Vibration and Control, 1(4):431-458. 


[14] Smalley, A.J., Camatti, M., Childs, D.W., 2006. Dynamic characteristics of the diverging taper honeycomb-stator seal. Journal of Turbomachinery, 128(4):717-724. 


[15] Wang, W.Z., Liu, Y.Z., Meng, G., 2009. A nonlinear model of flow-structure interaction between steam leakage through labyrinth seal and the whirling rotor. Journal of Mechanical Science and Technology, 23(12):3302-3315. 


[16] Wang, W.Z., Liu, Y.Z., Meng, G., 2009. Nonlinear analysis of orbital motion of a rotor subject to leakage air flow through an interlocking seal. Journal of Fluids and Structures, 25(5):751-765. 


[17] Wang, Y.F., Wang, X.Y., 2010. Nonlinear vibration analysis for a Jeffcott rotor with seal and air-film bearing excitations. Mathematical Problems in Engineering, 2010:657361


[18] Yuan, Z., Chu, F., Hao, R., 2007. Clearance-excitation force of shrouded turbine rotor accounting for pitching motion. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(2):187-194. 


[19] Zhang, W., 1990.  The Theoretical Base of Rotordynamic. (in Chinese), Science Press,Beijing :

[20] Zhong, Y.E., 1987.  Rotordynamics. (in Chinese), Tsinghua University Press,Beijing :


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE