CLC number: TU433
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-03-17
Cited: 1
Clicked: 8575
Qi-yin Zhu, Ze-xiang Wu, Yan-ling Li, Chang-jie Xu, Jian-hua Wang, Xiao-he Xia. A modified creep index and its application to viscoplastic modelling of soft clays[J]. Journal of Zhejiang University Science A, 2014, 15(4): 272-281.
@article{title="A modified creep index and its application to viscoplastic modelling of soft clays",
author="Qi-yin Zhu, Ze-xiang Wu, Yan-ling Li, Chang-jie Xu, Jian-hua Wang, Xiao-he Xia",
journal="Journal of Zhejiang University Science A",
volume="15",
number="4",
pages="272-281",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300331"
}
%0 Journal Article
%T A modified creep index and its application to viscoplastic modelling of soft clays
%A Qi-yin Zhu
%A Ze-xiang Wu
%A Yan-ling Li
%A Chang-jie Xu
%A Jian-hua Wang
%A Xiao-he Xia
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 4
%P 272-281
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300331
TY - JOUR
T1 - A modified creep index and its application to viscoplastic modelling of soft clays
A1 - Qi-yin Zhu
A1 - Ze-xiang Wu
A1 - Yan-ling Li
A1 - Chang-jie Xu
A1 - Jian-hua Wang
A1 - Xiao-he Xia
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 4
SP - 272
EP - 281
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300331
Abstract: Conventional consolidation tests on reconstituted specimens of numerous natural soft clays show a decreasing of creep index C
αe with increasing soil density. Based on all selected and conducted experimental results, a modified creep index C
αe
* defined in double logarithmic plane lge-lgt, was plotted for various clays, from which C
αe
* can be assumed as a constant for different soil densities. Then, the modified creep index was applied to a newly developed elastic viscoplastic model. In this way, the modified creep index C
αe
* can naturally take into account the nonlinear C
αe revealing the influence of soil density in the soil assemblies without additional parameters. Finally, the enhanced model was incorporated into the finite element code ABAQUS and used to simulate a consolidation test and a test embankment. The improvement of simulations by the modified creep index was highlighted by comparing simulations using the conventional creep index C
αe.
Open peer comments: Debate/Discuss/Question/Opinion
<1>