Full Text:   <7298>

Summary:  <2212>

CLC number: TU433

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-03-17

Cited: 1

Clicked: 8575

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.4 P.272-281

http://doi.org/10.1631/jzus.A1300331


A modified creep index and its application to viscoplastic modelling of soft clays*


Author(s):  Qi-yin Zhu1, Ze-xiang Wu1, Yan-ling Li1, Chang-jie Xu2,3, Jian-hua Wang1, Xiao-he Xia1

Affiliation(s):  1. Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; more

Corresponding email(s):   qiyin.zhu@gmail.com

Key Words:  Clays, Creep, Consolidation test, Embankment, Finite element method, Viscoplasticity


Qi-yin Zhu, Ze-xiang Wu, Yan-ling Li, Chang-jie Xu, Jian-hua Wang, Xiao-he Xia. A modified creep index and its application to viscoplastic modelling of soft clays[J]. Journal of Zhejiang University Science A, 2014, 15(4): 272-281.

@article{title="A modified creep index and its application to viscoplastic modelling of soft clays",
author="Qi-yin Zhu, Ze-xiang Wu, Yan-ling Li, Chang-jie Xu, Jian-hua Wang, Xiao-he Xia",
journal="Journal of Zhejiang University Science A",
volume="15",
number="4",
pages="272-281",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300331"
}

%0 Journal Article
%T A modified creep index and its application to viscoplastic modelling of soft clays
%A Qi-yin Zhu
%A Ze-xiang Wu
%A Yan-ling Li
%A Chang-jie Xu
%A Jian-hua Wang
%A Xiao-he Xia
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 4
%P 272-281
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300331

TY - JOUR
T1 - A modified creep index and its application to viscoplastic modelling of soft clays
A1 - Qi-yin Zhu
A1 - Ze-xiang Wu
A1 - Yan-ling Li
A1 - Chang-jie Xu
A1 - Jian-hua Wang
A1 - Xiao-he Xia
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 4
SP - 272
EP - 281
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300331


Abstract: 
Conventional consolidation tests on reconstituted specimens of numerous natural soft clays show a decreasing of creep index C αe with increasing soil density. Based on all selected and conducted experimental results, a modified creep index C αe * defined in double logarithmic plane lge-lgt, was plotted for various clays, from which C αe * can be assumed as a constant for different soil densities. Then, the modified creep index was applied to a newly developed elastic viscoplastic model. In this way, the modified creep index C αe * can naturally take into account the nonlinear C αe revealing the influence of soil density in the soil assemblies without additional parameters. Finally, the enhanced model was incorporated into the finite element code ABAQUS and used to simulate a consolidation test and a test embankment. The improvement of simulations by the modified creep index was highlighted by comparing simulations using the conventional creep index C αe.

一个修正的蠕变系数及其在软黏土黏塑性模拟中的应用

研究目的:提出一个更优的描述黏土非线性蠕变的方法。
创新要点:1.提出了一个修正的蠕变系数,该系数与土体的密度相关,物理意义明确;2.将修正的蠕变系数嵌入到新开发的一个黏塑性模型中,实现了基于ABAQUS的本构二次开发;3.为工程实例的计算提供更为有效的模型。
研究方法:1.总结广泛的调查土体蠕变试验结果,提出修正的蠕变系数(图3);2.给出修正的蠕变系数表示方法以及力学特性(图4);3.将所提系数嵌入到有限元程序中,验证了其准确性(图5)。
重要结论:1.修正的蠕变系数可以很好地描述软黏土蠕变系数随孔隙比变化的规律;2.通过工程案例证实了修正系数的优越性。

关键词:软黏土;蠕变;黏塑性;有限元

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Augustesen, A., Liingaard, M., Lade, P.V., 2004. Evaluation of time-dependent behavior of soils. International Journal of Geomechanics, 4(3):137-156. 


[2] Bjerrum, L., 1967. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of building. Gotechnique, 17(2):81-118. 

[3] Hinchberger, S.D., Rowe, R., 1998. Modelling the rate-sensitive characteristics of the Gloucester foundation soil. Canadian Geotechnical Journal, 35(5):769-789. 


[4] Hong, Z.X., 2007. Void ratio-suction behavior of remolded Ariake clays. Geotechnical Testing Journal, 30(3):234-239. 

[5] Hong, Z.X., Onitsuka, K., 1998. A method of correcting yield stress and compression index of Ariake clays for sample disturbance. Soils and Foundations, 38(2):211-222. 


[6] Karim, M.R., Gnanendran, C.T., Lo, S.C.R., 2010. Predicting the long-term performance of a wide embankment on soft soil using an elastic-viscoplastic model. Canadian Geotechnical Journal, 47(2):244-257. 


[7] Karstunen, M., Yin, Z.Y., 2010. Modelling time-dependent behaviour of Murro test embankment. Gotechnique, 60(10):735-749. 


[8] Karstunen, M., Krenn, H., Wheeler, S.J., 2005. Effect of anisotropy and destructuration on the behavior of Murro test embankment. International Journal of Geomechanics, 5(2):87-97. 


[9] Katona, M., 1984. Evaluation of a viscoplastic cap model. Journal of Geotechnical Engineering, 110(8):1106-1125. 


[10] Kutter, B.L., Sathialingam, N., 1992. Elastic-viscoplastic modelling of the rate-dependent behaviour of clays. Gotechnique, 42(3):427-441. 


[11] Leoni, M., Karstunen, M., Vermeer, P.A., 2008. Anisotropic creep model for soft soils. Gotechnique, 58(3):215-226. 


[12] Leroueil, S., Kabbaj, M., Tavenas, F., 1985. Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Gotechnique, 35(2):159-180. 


[13] Li, Q., Ng, C.W.W., Liu, G., 2012. Low secondary compressibility and shear strength of Shanghai Clay. Journal of Central South University, 19(8):2323-2332. 


[14] Mesri, G., Godlewski, P., 1977. Time and stress compressibility interrelationship. Journal of the Geotechnical Engineering Division, 103(5):417-430. 

[15] Oka, F., Adachi, T., Okano, Y., 1986. Two-dimensional consolidation analysis using an elasto-viscoplastic constitutive equation. International Journal for Numerical and Analytical Methods in Geomechanics, 10(1):1-16. 


[16] Stapelfeldt, T., Lojander, M., Vepslinen, P., 2007. Determination of horizontal permeability of soft clay. Proceedings of 17th International Conference on Soil Mechanics and Foundation Engineering, Madrid, 3:1385-1389. 

[17] Yin, J.H., Zhu, J.G., Graham, J., 2002. A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification. Canadian Geotechnical Journal, 39(1):157-173. 


[18] Yin, Z.Y., Hicher, P.Y., 2008. Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12):1515-1535. 


[19] Yin, Z.Y., Wang, J.H., 2012. A one-dimensional strain-rate based model for soft structured clays. Science in China Series E, 55(1):90-100. 


[20] Yin, Z.Y., Chang, C.S., Karstunen, M., 2010. An anisotropic elastic viscoplastic model for soft soils. International Journal of Solids and Structures, 47(5):665-677. 


[21] Yin, Z.Y., Karstunen, M., Chang, C.S., 2011. Modeling time-dependent behavior of soft sensitive clay. Journal of Geotechnical and Geoenvironmental Engineering, 137(11):1103-1113. 


[22] Yin, Z.Y., Karstunen, M., Wang, J.H., 2011. Influence of features of natural soft clay on the behavior of embankment. Journal of Central South University of Technology, 18(5):1667-1676. 


[23] Zeng, L.L., Hong, Z.S., Liu, S.Y., 2012. Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays. Chinese Journal of Geotechnical Engineering, (in Chinese),34(8):1496-1500. 

[24] Zhu, Q.Y., Jin, Y.F., Yin, Z.Y., Hicher, P.Y., 2013. Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(11):767-777. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE