Full Text:   <3354>

Summary:  <2043>

CLC number: TH137.52

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-03-15

Cited: 0

Clicked: 5173

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Da-yun Yi

http://orcid.org/0000-0001-9274-6632

Liang Lu

http://orcid.org/0000-0002-9403-330X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.4 P.317-324

http://doi.org/10.1631/jzus.A1400351


Squeal noise in hydraulic poppet valves


Author(s):  Da-yun Yi, Liang Lu, Jun Zou, Xin Fu

Affiliation(s):  The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   luliang829@zju.edu.cn

Key Words:  Poppet valve, Squeal noise, Helmholtz resonance, Fluid acoustics, Shear layer instability


Da-yun Yi, Liang Lu, Jun Zou, Xin Fu. Squeal noise in hydraulic poppet valves[J]. Journal of Zhejiang University Science A, 2016, 17(4): 317-324.

@article{title="Squeal noise in hydraulic poppet valves",
author="Da-yun Yi, Liang Lu, Jun Zou, Xin Fu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="4",
pages="317-324",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400351"
}

%0 Journal Article
%T Squeal noise in hydraulic poppet valves
%A Da-yun Yi
%A Liang Lu
%A Jun Zou
%A Xin Fu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 4
%P 317-324
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400351

TY - JOUR
T1 - Squeal noise in hydraulic poppet valves
A1 - Da-yun Yi
A1 - Liang Lu
A1 - Jun Zou
A1 - Xin Fu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 4
SP - 317
EP - 324
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400351


Abstract: 
The poppet valve is a fundamental component in fluid power systems. Under particular conditions, annoying “squeal” noises may be generated in hydraulic poppet valves. In the present study, the frequency spectrum of the squeal noise is obtained by analyzing the sampling data from the accelerometer mounted on the valve body. It is found that the flow velocity, pressure, and structural parameters have crucial effects on the properties of squeal noise, especially frequency. Larger valve chamber volume or lower backpressure leads to lower fundamental frequency of the squeal noise. An explanation for the squeal noise, as a result of helmholtz resonance, is suggested and proved by experimental results.

Noise analysis is not new in the scientific panorama, but the application in poppet valve is interesting. The results are interesting, and the explanations with regard to cavitation are plausible.

液压锥阀中的啸叫噪声

目的:液压锥阀产生尖锐刺耳的啸叫噪声,严重地降低了液压锥阀的品质。本文探讨液压锥阀啸叫噪声的产生机理,揭示啸叫噪声对特定频率噪声信号的选择性放大原理,为啸叫噪声抑制提供理论依据。
创新点:观测到介质相变、锥阀开度及阀腔变化下啸叫噪声基频漂移现象,建立空化条件下锥阀流体共振分析模型,获得了锥阀啸叫噪声是对特定频率信号的选择性放大的结论。
方法:1. 通过实验分析,观测到液压锥阀中啸叫噪声基频的漂移规律(图5~7、10和11);2. 提出液压锥阀啸叫噪声是流声耦合引起的亥姆霍兹共振假设;3. 通过建立锥阀阀腔声学共振频率模型,运用实验与理论相结合的方法分析不同工况下的啸叫噪声基频漂移规律,通过大量实验验证所提假设的正确性(图7、10和11)。
结论:1. 液压锥阀流声共振产生啸叫噪声,完成对特定频率噪声信号的选择性放大;2. 液压锥阀只有在因流体不稳定而产生的周期性压力扰动信号的频率与阀腔声学共振频率接近时才产生啸叫噪声;3. 运用液压锥阀流声共振产生啸叫噪声的结论,通过改变阀腔声学共振频率,使之与流道内因流体不稳定引起的压力扰动频率错开,能有效地抑制液压锥阀中啸叫噪声的产生。

关键词:锥阀;啸叫噪声;亥姆霍兹共振;流声共振;剪切层不稳定

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amirante, R., Distaso, E., Tamburrano, P., 2014. Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Conversion and Management, 87:208-219.

[2]Baines, P.G., Mitsudera, H., 1994. On the mechanism of shear flow instabilities. Journal of Fluid Mechanics, 276:327-342.

[3]Baker, D.N., Myhre, D.L., 1969. Effects of leaf shape and boundary layer thickness on photosynthesis in cotton (Gossypium hirsutum). Physiologia Plantarum, 22(5):1043-1049.

[4]Balatka, K., Mochizuki, S., Murata, A., 1996. Flow in an annular-conical passage. JSME International Journal Series B, Fluids and Thermal Engineering, 39(1):66-71.

[5]Dickey, N.S., Selamet, A., 1996. Helmholtz resonators: one-dimensional limit for small cavity length-to-diameter ratios. Journal of Sound and Vibration, 195(3):512-517.

[6]Guo, B., Langrish, T.A.G., Fletcher, D.F., 2001. An assessment of turbulence models applied to the simulation of a two-dimensional submerged jet. Applied Mathematical Modeling, 25(8):535-653.

[7]Kieffer, S.W., 1977. Sound speed in liquid-gas mixtures: water-air and water-steam. Journal of Geophysical Research, 82(20):2895-2904.

[8]Lawson, N.J., Davidson, M.R., 1999. Crossflow characteristics of an oscillation jet in a thin slab casting mould. Journal of Fluids Engineering, 121(3):588-595.

[9]Lu, L., Zou, J., Fu, X., 2012. The acoustics of cavitation in spool valve with U-notches. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 226(5):540-549.

[10]Nagaya, Y., Murase, M., 2012. Detection of cavitation with directional microphones placed outside piping. Nuclear Engineering and Design, 249:140-145.

[11]Nakano, M., Outa, E., Tajima, K., 1988. Noise and vibration related to the patterns of supersonic annular flow in a pressure reducing gas valve. Journal of Fluids Engineering, 110(1):55-61.

[12]Oshima, S., Ichikawa, T., 1985. Cavitation phenomena and performance of oil hydraulic poppet valve: 1st report. Mechanism of generation of cavitation and flow performance. Transactions of the Japan Society of Mechanical Engineers Series B, 51(462):427-435.

[13]Panton, R.L., 1990. Effect of orifice geometry on Helmholtz resonator excitation by grazing flow. AIAA Journal, 28(1):60-65.

[14]Panton, R.L., Miller, J.M., 1975. Resonant frequencies of cylindrical Helmholtz resonators. The Journal of the Acoustical Society of America, 57(6):1533-1535.

[15]Porteiro, J.L.F., Weber, S.T., Rahman, M.M., 1997. An experimental study of flow induced noise in counterbalance valves. International Symposium on Fluid–Structure Interactions, Aeroelasticity, Flow–Induced Vibration and Noise, Dallas, USA, p.557-562.

[16]Rahman, M.M., Porteiro, J.L.F., Weber, S.T., 1997. Numerical simulation and animation of oscillating turbulent flow in a counterbalance valve. Energy Conversion Engineering Conference, IECEC-97, Proceedings of the 32nd Intersociety, Honolulu, USA, p.1525-1530.

[17]Raman, G., 1999. Supersonic jet screech: half-century from Powell to the present. Journal of Sound and Vibration, 225(3):543-571.

[18]Rienstra, S.W., Hirschberg, A., 2012. An Introduction to Acoustics. Eindhoven University of Technology, Eindhoven, p.36-37.

[19]Rockwell, D., Naudascher, E., 1979. Self-sustained oscillations of impinging free shear layers. Annual Review of Fluid Mechanics, 11(1):67-94.

[20]Selamet, A., Lee, I., 2003. Helmholtz resonator with extended neck. The Journal of the Acoustical Society of America, 113(4):1975-1985.

[21]Shin, Y.C., 1991. Static and dynamic characteristics of a two stage pilot relief valve. Journal of Dynamic Systems, Measurement, and Control, 113(2):280-288.

[22]Tang, S.K., 2005. On Helmholtz resonators with tapered necks. Journal of Sound and Vibration, 279(3-5):1085-1096.

[23]Testud, P., Aurégan, Y., Moussou, P., et al., 2009. The whistling potentiality of an orifice in a confined flow using an energetic criterion. Journal of Sound and Vibration, 325(4-5):769-780.

[24]Wang, Y.G., Shintani, M., Liu, S.J., et al., 1998. Cavitation characteristics around a hollow jet valve (observation by high-speed photographs and monitoring by vibration). Japanese Turbomachinery Society, 26(1998):361-368.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE