Full Text:   <3068>

Summary:  <2134>

CLC number: TK734

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-10-12

Cited: 4

Clicked: 6479

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

De-you Li

http://orcid.org/0000-0002-3934-1916

Hong-jie Wang

http://orcid.org/0000-0003-4775-5016

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.11 P.851-863

http://doi.org/10.1631/jzus.A1500087


Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model


Author(s):  De-you Li, Ru-zhi Gong, Hong-jie Wang, Wen-wen Fu, Xian-zhu Wei, Zhan-sheng Liu

Affiliation(s):  1School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; more

Corresponding email(s):   wanghongjie@hit.edu.cn

Key Words:  Pump-turbine, Flow analysis, Flow angle, Hydraulic loss, Drooping zone


Share this article to: More |Next Article >>>

De-you Li, Ru-zhi Gong, Hong-jie Wang, Wen-wen Fu, Xian-zhu Wei, Zhan-sheng Liu. Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model[J]. Journal of Zhejiang University Science A, 2015, 16(11): 851-863.

@article{title="Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model",
author="De-you Li, Ru-zhi Gong, Hong-jie Wang, Wen-wen Fu, Xian-zhu Wei, Zhan-sheng Liu",
journal="Journal of Zhejiang University Science A",
volume="16",
number="11",
pages="851-863",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500087"
}

%0 Journal Article
%T Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model
%A De-you Li
%A Ru-zhi Gong
%A Hong-jie Wang
%A Wen-wen Fu
%A Xian-zhu Wei
%A Zhan-sheng Liu
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 11
%P 851-863
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500087

TY - JOUR
T1 - Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model
A1 - De-you Li
A1 - Ru-zhi Gong
A1 - Hong-jie Wang
A1 - Wen-wen Fu
A1 - Xian-zhu Wei
A1 - Zhan-sheng Liu
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 11
SP - 851
EP - 863
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500087


Abstract: 
The energy-discharge characteristics of pump-turbines in pump mode with a hump region are significantly important for operating stability. To investigate the flow characteristics, 3D steady numerical simulations are conducted for a given guide vane opening of 32 mm by solving Reynolds-averaged Navier-Stokes (RANS) equations using the shear-stress transport (SST) k-ω turbulence model. Based on the validation of computational fluid dynamics (CFD) results using experimental benchmarks, the part-load (0.45φBEP), drooping zone load (0.65φBEP), near best efficiency point (BEP) (0.90φBEP), BEP (1.00φBEP), and overload (1.24φBEP) regions are chosen to analyze how and why the fluid properties change in the runner. The causes of flow separation and spatial characteristics of flow at different load points are obtained through the analysis of flow angle and hydraulic losses. The results show that flow angle at the leading and trailing edge from the crown to the band distributes differently among these five operating points. Then, the reasons for drooping are investigated based on the Euler theory. It is found that drooping behavior comes from both the incidence/deviation effect and frictional losses. In addition, the runner losses are more consequential to drooping as shown by hydraulic loss analysis.

给定活动导叶开口水泵水轮机模型泵工况驼峰现象流动分析

目的:探索水泵水轮机泵工况在超负荷工况(1.24φBEP)、最优工况(1.00φBEP)、靠近最优工况(0.90φBEP)、驼峰区工况(0.65φBEP)以及低负荷工况(0.45φBEP)的流动特性,期望获得流动特性变化规律,揭示驼峰特性形成机理。
方法:对某一水泵水轮机模型,采用剪切压力传输(SST) k-ω湍流模型进行三维定常数值模拟,在实验验证的基础上:1. 在曲面坐标系中,分析由叶片形状所引起的各个工况叶片进出口边在周向和叶片方向上的分布规律;2. 运用经典欧拉理论分析叶片进出口边液流角变化对各个工况的欧拉水头的影响;3. 通过水力损失分析,获得不同部件各个工况损失变化规律。
结论:1. 转轮叶片进出水边的液流角随着叶片方向在不同流量工况分布下具有明显差异,导致转轮流道不同程度流动分离;2. 运用经典欧拉理论得出驼峰区工况点出口角液流的减小与入口液流的增加是驼峰特性产生的主要原因之一;3. 通过损失分析,确定泵工况损失主要在转轮和双列叶栅中,得出转轮部分损失是驼峰特性形成的主要原因之一;4. 综合分析,驼峰特性是由该工况欧拉动量的减小和转轮部分损失的增加共同作用的结果。

关键词:水泵水轮机;流动分析;液流角;水力损失;驼峰区

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Anciger, D., Jung, A., Aschenbrenner, T., 2010. Prediction of rotating stall and cavitation inception in pump turbines. IOP Conference Series: Earth and Environmental Science, 12(1):012013.

[2]Backman, G., 2008. CFD validation of pressure fluctuations in a pump-turbine. Master Thesis, Lulea University of technology, Lulea, Sweden.

[3]Braun, O., 2009. Part Load Flow in Radial Centrifugal Pumps. PhD Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.

[4]Braun, O., Kueny, J.L., Avellan, F., 2005. Numerical analysis of flow phenomena related to the unstable energy-discharge characteristic of a pump-turbine in pump mode. ASME Fluids Engineering Division Summer Meeting, Houston, USA.

[5]Danciocan, G., Louis, J., 2006. Experimental analysis of rotor-stator interaction in a pump-turbine. Proceedings of 23rd IAHR Symposium, Yokohama, Japan.

[6]Hasmatuchi, V., Roth, S., Botero, F., et al., 2010. High-speed flow visualization in a pump-turbine under off-design operating conditions. IOP Conference Series: Earth and Environmental Science, 12:012059.

[7]Hasmatuchi, V., Roth, S., Botero, F., et al., 2011. Hydrodynamics of a pump-turbine at off-design operating conditions: numerical simulation. ASME-JSME-KSME Joint Fluids Engineering Conference, American Society of Mechanical Engineers, p.495-506.

[8]International Energy Agency (IEA), 2012. Technology Roadmap: Hydropower. Technical Report, IEA, Paris, France. Available from: http://www.iea.org/publications/freepublications/publication/technology-roadmap-hydropower.html [Accessed on Apr. 14, 2014].

[9]Ji, X.Y., Lai, X., 2011. Numerical simulation of the S-shape characteristics of the pump-turbine. Chinese Journal of Hydrodynamics, 26(3):318-325 (in Chinese).

[10]Li, D.Y., Wang, H.J., Xiang, G.M., et al., 2015. Unsteady simulation and analysis for hump characteristics of a pump turbine model. Renewable Energy, 77:32-42.

[11]Li, W., Qian, Z.D., Gao, Y.Y., 2013. Comparison of pressure oscillation characteristics in a Francis hydraulic turbine with four different turbulence models. Engineering Journal of Wuhan University, 46(2):174-179 (in Chinese).

[12]Liu, J.T., Liu, S.H., Wu, Y.L., et al., 2012. Numerical investigation of the hump characteristic of a pump-turbine based on an improved cavitation model. Computers & Fluids, 68:105-111.

[13]Liu, J.T., Wu, Y.L., Liu, S.H., 2013. Study of unsteady cavitation flow of a pump-turbine at pump mode. IOP Conference Series: Materials Science and Engineering, 52: 062021.

[14]Nicolet, C., Ruchonner, N., Alligne, S., et al., 2010. Hydroacoustic simulation of rotor-stator interaction in resonance conditions in Francis pump-turbine. IOP Conference Series: Earth and Environmental Science, 12:012005.

[15]Olimstad, G., Nielsen, T., Børresen, B., 2012. Dependency on runner geometry for reversible pump turbine characteristics in turbine mode of operation. Journal of Fluids Engineering, 134(12):121102.

[16]Premkumar, T.M., Kumar, P., Chatterjee, D., 2014. Cavitation characteristics of S-blade used in fully reversible pump-turbine. Journal of Fluids Engineering, 136(5):051101.

[17]Ran, H.J., Zhang, Y., Luo, X.W., et al., 2011. Numerical simulation of the positive-slope performance curve of reversible hydro-turbine in pumping mode. Journal of Hydroelectric Engineering, 30(3):175-179 (in Chinese).

[18]Sun, Y.K., Zuo, Z.G., Liu, S.H., 2012. Numerical study of pressure fluctuations in different guide vanes’ opening angle in pump mode of a pump-turbine. IOP Conference Series: Earth and Environmental Science, 15:062037.

[19]Sun, Y.K., Zuo, Z.G., Liu, S.H., et al., 2014. Distribution of pressure fluctuations in a prototype pump turbine at pump mode. Advances in Mechanical Engineering, 6: 923937.

[20]Wang, L.Q., Yin, J.L., Jiao, L., et al., 2011. Numerical investigation in the “S” characteristics of a reduced pump turbine model. Science China Technological Sciences, 54(5):1259-1266.

[21]Widmer, C., Staubli, T., Ledergerber, N., 2011. Unstable characteristic and rotating stall in turbine brake operation of pump-turbines. Journal of Fluids Engineering, 133(4):041101.

[22]Xiao, R.F., Sun, H., Liu, W.C., et al., 2012. Analysis of S characteristics and its pressure pulsation of pump-turbine under pre-opening guide vanes. Journal of Mechanical Engineering, 48(08):174-179.

[23]Xu, L., Cui, G.X., Xu, C.X., et al., 2007. Large eddy simulation of flows passage of reversible runner. Journal of Hydroelectric Engineering, 26(4):124-129.

[24]Yan, J., Koutnik, J., Seidel, U., 2010. Compressible simulation of rotor-stator interaction in pump-turbines. IOP Conference Series: Earth and Environmental Science, 12: 012008.

[25]Yan, J., Seidel, U., Koutnik, J., 2012. Numerical simulation of hydrodynamics in a pump-turbine at off-design operating conditions in turbine mode. IOP Conference Series: Earth and Environmental Science, 15:032041.

[26]Yin, J.L., Liu, J.T., Wang, L.Q., 2010. Performance prediction and flow analysis in the vaned distributor of a pump-turbine under low flow rate in pump mode. Science China Technological Sciences, 53(12):3302-3309.

[27]Yin, J.L., Liu, J.T., Wang, L.Q., et al., 2011. Prediction of pressure fluctuations of pump-turbine under off-design condition in pump-turbine. Journal of Engineering Thermophysics, 32(07):1141-1144.

[28]Zobeiri, A., Kueny, J.L., Farhat, M., 2006. Pump-turbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Japan.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE