CLC number: TK734
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-10-12
Cited: 4
Clicked: 6479
Citations: Bibtex RefMan EndNote GB/T7714
De-you Li, Ru-zhi Gong, Hong-jie Wang, Wen-wen Fu, Xian-zhu Wei, Zhan-sheng Liu. Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model[J]. Journal of Zhejiang University Science A, 2015, 16(11): 851-863.
@article{title="Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model",
author="De-you Li, Ru-zhi Gong, Hong-jie Wang, Wen-wen Fu, Xian-zhu Wei, Zhan-sheng Liu",
journal="Journal of Zhejiang University Science A",
volume="16",
number="11",
pages="851-863",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500087"
}
%0 Journal Article
%T Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model
%A De-you Li
%A Ru-zhi Gong
%A Hong-jie Wang
%A Wen-wen Fu
%A Xian-zhu Wei
%A Zhan-sheng Liu
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 11
%P 851-863
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500087
TY - JOUR
T1 - Fluid flow analysis of drooping phenomena in pump mode for a given guide vane setting of a pump-turbine model
A1 - De-you Li
A1 - Ru-zhi Gong
A1 - Hong-jie Wang
A1 - Wen-wen Fu
A1 - Xian-zhu Wei
A1 - Zhan-sheng Liu
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 11
SP - 851
EP - 863
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500087
Abstract: The energy-discharge characteristics of pump-turbines in pump mode with a hump region are significantly important for operating stability. To investigate the flow characteristics, 3D steady numerical simulations are conducted for a given guide vane opening of 32 mm by solving Reynolds-averaged Navier-Stokes (RANS) equations using the shear-stress transport (SST) k-ω turbulence model. Based on the validation of computational fluid dynamics (CFD) results using experimental benchmarks, the part-load (0.45φBEP), drooping zone load (0.65φBEP), near best efficiency point (BEP) (0.90φBEP), BEP (1.00φBEP), and overload (1.24φBEP) regions are chosen to analyze how and why the fluid properties change in the runner. The causes of flow separation and spatial characteristics of flow at different load points are obtained through the analysis of flow angle and hydraulic losses. The results show that flow angle at the leading and trailing edge from the crown to the band distributes differently among these five operating points. Then, the reasons for drooping are investigated based on the Euler theory. It is found that drooping behavior comes from both the incidence/deviation effect and frictional losses. In addition, the runner losses are more consequential to drooping as shown by hydraulic loss analysis.
[1]Anciger, D., Jung, A., Aschenbrenner, T., 2010. Prediction of rotating stall and cavitation inception in pump turbines. IOP Conference Series: Earth and Environmental Science, 12(1):012013.
[2]Backman, G., 2008. CFD validation of pressure fluctuations in a pump-turbine. Master Thesis, Lulea University of technology, Lulea, Sweden.
[3]Braun, O., 2009. Part Load Flow in Radial Centrifugal Pumps. PhD Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.
[4]Braun, O., Kueny, J.L., Avellan, F., 2005. Numerical analysis of flow phenomena related to the unstable energy-discharge characteristic of a pump-turbine in pump mode. ASME Fluids Engineering Division Summer Meeting, Houston, USA.
[5]Danciocan, G., Louis, J., 2006. Experimental analysis of rotor-stator interaction in a pump-turbine. Proceedings of 23rd IAHR Symposium, Yokohama, Japan.
[6]Hasmatuchi, V., Roth, S., Botero, F., et al., 2010. High-speed flow visualization in a pump-turbine under off-design operating conditions. IOP Conference Series: Earth and Environmental Science, 12:012059.
[7]Hasmatuchi, V., Roth, S., Botero, F., et al., 2011. Hydrodynamics of a pump-turbine at off-design operating conditions: numerical simulation. ASME-JSME-KSME Joint Fluids Engineering Conference, American Society of Mechanical Engineers, p.495-506.
[8]International Energy Agency (IEA), 2012. Technology Roadmap: Hydropower. Technical Report, IEA, Paris, France. Available from: http://www.iea.org/publications/freepublications/publication/technology-roadmap-hydropower.html [Accessed on Apr. 14, 2014].
[9]Ji, X.Y., Lai, X., 2011. Numerical simulation of the S-shape characteristics of the pump-turbine. Chinese Journal of Hydrodynamics, 26(3):318-325 (in Chinese).
[10]Li, D.Y., Wang, H.J., Xiang, G.M., et al., 2015. Unsteady simulation and analysis for hump characteristics of a pump turbine model. Renewable Energy, 77:32-42.
[11]Li, W., Qian, Z.D., Gao, Y.Y., 2013. Comparison of pressure oscillation characteristics in a Francis hydraulic turbine with four different turbulence models. Engineering Journal of Wuhan University, 46(2):174-179 (in Chinese).
[12]Liu, J.T., Liu, S.H., Wu, Y.L., et al., 2012. Numerical investigation of the hump characteristic of a pump-turbine based on an improved cavitation model. Computers & Fluids, 68:105-111.
[13]Liu, J.T., Wu, Y.L., Liu, S.H., 2013. Study of unsteady cavitation flow of a pump-turbine at pump mode. IOP Conference Series: Materials Science and Engineering, 52: 062021.
[14]Nicolet, C., Ruchonner, N., Alligne, S., et al., 2010. Hydroacoustic simulation of rotor-stator interaction in resonance conditions in Francis pump-turbine. IOP Conference Series: Earth and Environmental Science, 12:012005.
[15]Olimstad, G., Nielsen, T., Børresen, B., 2012. Dependency on runner geometry for reversible pump turbine characteristics in turbine mode of operation. Journal of Fluids Engineering, 134(12):121102.
[16]Premkumar, T.M., Kumar, P., Chatterjee, D., 2014. Cavitation characteristics of S-blade used in fully reversible pump-turbine. Journal of Fluids Engineering, 136(5):051101.
[17]Ran, H.J., Zhang, Y., Luo, X.W., et al., 2011. Numerical simulation of the positive-slope performance curve of reversible hydro-turbine in pumping mode. Journal of Hydroelectric Engineering, 30(3):175-179 (in Chinese).
[18]Sun, Y.K., Zuo, Z.G., Liu, S.H., 2012. Numerical study of pressure fluctuations in different guide vanes’ opening angle in pump mode of a pump-turbine. IOP Conference Series: Earth and Environmental Science, 15:062037.
[19]Sun, Y.K., Zuo, Z.G., Liu, S.H., et al., 2014. Distribution of pressure fluctuations in a prototype pump turbine at pump mode. Advances in Mechanical Engineering, 6: 923937.
[20]Wang, L.Q., Yin, J.L., Jiao, L., et al., 2011. Numerical investigation in the “S” characteristics of a reduced pump turbine model. Science China Technological Sciences, 54(5):1259-1266.
[21]Widmer, C., Staubli, T., Ledergerber, N., 2011. Unstable characteristic and rotating stall in turbine brake operation of pump-turbines. Journal of Fluids Engineering, 133(4):041101.
[22]Xiao, R.F., Sun, H., Liu, W.C., et al., 2012. Analysis of S characteristics and its pressure pulsation of pump-turbine under pre-opening guide vanes. Journal of Mechanical Engineering, 48(08):174-179.
[23]Xu, L., Cui, G.X., Xu, C.X., et al., 2007. Large eddy simulation of flows passage of reversible runner. Journal of Hydroelectric Engineering, 26(4):124-129.
[24]Yan, J., Koutnik, J., Seidel, U., 2010. Compressible simulation of rotor-stator interaction in pump-turbines. IOP Conference Series: Earth and Environmental Science, 12: 012008.
[25]Yan, J., Seidel, U., Koutnik, J., 2012. Numerical simulation of hydrodynamics in a pump-turbine at off-design operating conditions in turbine mode. IOP Conference Series: Earth and Environmental Science, 15:032041.
[26]Yin, J.L., Liu, J.T., Wang, L.Q., 2010. Performance prediction and flow analysis in the vaned distributor of a pump-turbine under low flow rate in pump mode. Science China Technological Sciences, 53(12):3302-3309.
[27]Yin, J.L., Liu, J.T., Wang, L.Q., et al., 2011. Prediction of pressure fluctuations of pump-turbine under off-design condition in pump-turbine. Journal of Engineering Thermophysics, 32(07):1141-1144.
[28]Zobeiri, A., Kueny, J.L., Farhat, M., 2006. Pump-turbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Japan.
Open peer comments: Debate/Discuss/Question/Opinion
<1>