Full Text:   <3634>

Summary:  <2476>

CLC number: V22

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-07-24

Cited: 4

Clicked: 6229

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei Huang

http://orcid.org/0000-0001-9805-985X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.8 P.632-645

http://doi.org/10.1631/jzus.A1500308


A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method


Author(s):  Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan

Affiliation(s):  Science and Technology on Scramjet Laboratory, of Defense Technology, Changsha 410073,

Corresponding email(s):   weihuang@nudt.edu.cn

Key Words:  Class/shape function transformation (CST), Parameterization, Numerical simulation, Response surface model, Optimization, Airfoil design


Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University Science A, 2016, 17(8): 632-645.

@article{title="A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method",
author="Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan",
journal="Journal of Zhejiang University Science A",
volume="17",
number="8",
pages="632-645",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500308"
}

%0 Journal Article
%T A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method
%A Tian-tian Zhang
%A Wei Huang
%A Zhen-guo Wang
%A Li Yan
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 8
%P 632-645
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500308

TY - JOUR
T1 - A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method
A1 - Tian-tian Zhang
A1 - Wei Huang
A1 - Zhen-guo Wang
A1 - Li Yan
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 8
SP - 632
EP - 645
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500308


Abstract: 
An excellent airfoil with a high lift-to-drag ratio may decrease oil consumption and enhance the voyage. Based on NACA 0012, an improved airfoil is explored in this paper. The class/shape function transformation has been proved to be a good method for airfoil parameterization, and in this paper it is modified to improve imitation accuracy. The computational fluid dynamics method is applied to obtain numerically the aerodynamic parameters of the parameterized airfoil, and the result is proved credible by comparison with available experimental data in the open literature. A polynomial-based response surface model and the uniform Latin hypercube sampling method are employed to decrease computational cost. Finally, the nonlinear programming by quadratic Lagrangian method is utilized to modify the multi-island genetic algorithm, which has an improved optimization effect than the method used on its own. The obtained result shows that the modified class/shape function transformation method produces a better imitation of an airfoil in the nose and tail regions than the original method, and that it will satisfy the tolerance zone of the model in a wind tunnel. The response surface model based on the uniform Latin hypercube sampling method gives an accurate prediction of the lift-to-drag ratio with changes in the design variables. The numerical result of the flow around the airfoil shows reasonable agreement with the experimental data graphically and quantitatively. Ultimately, an airfoil with better capacity than the original one is acquired using the multi-island genetic algorithm based nonlinear programming by quadratic Lagrangian optimization method. The pressure contours and lift-to-drag ratio along with the attack angle have been compared with those of the original airfoil, and the results demonstrate the strength of the optimized airfoil. The process for exploring an improved airfoil through parameterization to optimization is worth referencing in future work.

The authors describe an interesting exercise of the aerodynamic optimization of a NACA0012 profile using a CST parametrization, a polynomial based response surface model as surrogate model combined with a latin hypercube sampling to reduce the computational cost and a combination of Genetic Algorithm and gradient algorithms as optimization method. The main advance proposed by the authors is a new distribution of the control points given by formula (8). This new distribution allows a better definition of the nose and tail area of the airfoil without sacrificing the accuracy in the rest of the profile.

基于数值计算方法的翼型参数化、建模与优化研究

目的:1. 比较并改善翼型参数化方法,获得设计变量少、拟合精度高的参数化方法;2. 在参数化的基础上利用数值模拟的方法获取翼型流场参数,优化并获得特定条件下升阻比最大的翼型。
创新点:1. 通过与多项式拟合方法的对比证明了类别/形状函数转换(CST)法在翼型拟合方面的优越性,并通过调整控制点分布,在不增加设计变量的基础上改善了CST方法;2. 通过建立响应面模型,利用多岛遗传算法与非线性序列二次规划法相结合的方式获得了更好的翼型优化效果。
方法:1. 利用修饰后的CST法对翼型进行参数化拟合与设计,并通过与二项式拟合法比较来验证其优越性;2. 通过数值方法对翼型周围流场进行计算并与实验结果对比,获得精确计算气动参数的仿真条件;3. 通过拉丁超立方采样获得设计变量,建立设计变量与翼型升阻比之间的响应面模型,通过多岛遗传算法与非线性序列二次规划法的结合和优化,得到一定条件下升阻比最大的翼型。
结论:1. CST法是一种优秀的参数化方法,本文的优化改善了形状函数控制点选取法则,使其对翼型头部和尾部的描述更加精确;与多项式相比,CST法可以通过更少的设计变量得到更高的拟合精度。2. 基于多岛遗传算法的非线性序列二次规划法在本文中用以优化翼型使其具有更高升阻比。优化前后翼型的比较显示,两种优化方法的结合可以得到比单独使用各优化方法更好的结果。

关键词:类别/形状函数转换;参数化;数值仿真;响应面模型;优化;翼型设计

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen, Y., Lv, L., 2014. The multi-objective optimization of combustion chamber of DI diesel engine by NLPQL algorithm. Applied Thermal Engineering, 73(1):1332-1339.

[2]Ding, F., Shen, C.B., Huang, W., et al., 2015. Numerical validation and back-pressure effect on internal compression flows of typical supersonic inlet. The Aeronautical Journal, 119(1215):631-645.

[3]Fluent Inc., 2006. Fluent 6.3 User’s Guide. Fluent Inc., Lebanon.

[4]Huang, W., 2014. Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches. International Journal of Hydrogen Energy, 39(8):3914-3925.

[5]Huang, W., 2015. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(7):551-561.

[6]Huang, W., Pourkashanian, M., Ma, L., et al., 2012a. Effect of geometric parameters on the drag of the cavity flameholder based on the variance analysis method. Aerospace Science and Technology, 21(1):24-30.

[7]Huang, W., Wang, Z.G., Li, S.B., et al., 2012b. Influences of H2O mass fraction and chemical kinetics mechanism on the turbulent diffusion combustion of H2-O2 in supersonic flows. Acta Astronautica, 76:51-59.

[8]Huang, W., Li, S.B., Liu, J., et al., 2012c. Investigation on high angle of attack characteristics of hypersonic space vehicle. Science China Technological Sciences, 55(5):1437-1442.

[9]Kevin, L., David, M., 2009. A surface parameterization method for airfoil optimization and high lift 2D geometries utilizing the CST methodology. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA.

[10]Kulfan, B.M., 2007. A universal parametric geometry representation method-“CST”. 45th AIAA Aerospace Meeting & Exhibit, Reno, Nevada, USA.

[11]Li, F., Qin, Y., Pang, Z., et al., 2014. Design and optimization of PSD housing using a MIGA-NLPQL. Strojniški vestnik – Journal of Mechanical Engineering, 60(7-8):525-535.

[12]Liu, X., Zhu, Q., Lu, H., 2014. Modeling multiresponse surfaces for airfoil design with multiple-output-Gaussian-process regression. Journal of Aircraft, 51(3):740-747.

[13]Luo, J.N., Lu, W.X., 2014. Comparison of surrogate models with different methods in groundwater remediation process. Journal of Earth System Science, 123(7):1579-1589.

[14]Ma, Y., Yang, T., Feng, Z., et al., 2015. Hypersonic lifting body aerodynamic shape optimization based on the multiobjective evolutionary algorithm based on decomposition. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(7):1246-1266.

[15]McKay, M.D., Beckman, R.J., Conover, W.J., 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2):239-245.

[16]Morris, C.C., Allison, D.L., Schetz, J.A., et al., 2014. Parametric geometry model for design studies of tailless supersonic aircraft. Journal of Aircraft, 51(5):1455-1466.

[17]Namura, N., Shimoyama, K., Obayashi, S., 2015. Kriging surrogate model enhanced by coordinate transformation of design space based on eigenvalue decomposition. In: Gaspar-Cunha, A., Antunes, C.H., Coello, C.C. (Eds.), Evolutionary Multi-criterion Optimization. Springer International Publishing, Switzerland, p.321-335.

[18]Nejat, A., Mirzabeygi, P., Panahi, M.S., 2014. Airfoil shape optimization using improved multiobjective territorial particle swarm algorithm with the objective of improving stall characteristics. Structural & Multidisciplinary Optimization, 49(6):953-967.

[19]Nordanger, K., Holdahl, R., Kvamsdal, T., et al., 2015. Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric incompressible Navier–Stokes solver with the Spalart–Allmaras turbulence model. Computer Methods in Applied Mechanics and Engineering, 290: 183-208.

[20]Qian, J.L., Wang, D.F., 2011. Experimental and numerical study on the aerodynamics characteristics of an airfoil adjacent to a ground. Chinese Journal of Hydrodynamics, 26(2):150-156 (in Chinese).

[21]Shi, L., Yang, R.J., Zhu, P., 2012. A method for selecting surrogate models in crashworthiness optimization. Structural and Multidisciplinary Optimization, 46(2):159-170.

[22]Smirnov, N.N., Betelin, V.B., Nikitin, V.F., et al., 2015. Accumulation of errors in numerical simulations of chemically reacting gas dynamics. Acta Astronautica, 117: 338-355.

[23]Sobieczky, H., 1999. Parametric airfoils and wings. In: Fujii, K., Dulikravich, G.S. (Eds.), Recent Development of Aerodynamic Design Methodologies. Vieweg+Teubner Verlag, p.71-87.

[24]Straathof, M.H., van Tooren, M.J.L., 2011. Extension to the class-shape-transformation method based on B-splines. AIAA Journal, 49(4):780-790.

[25]Straathof, M.H., van Tooren, M.J.L., 2012. Adjoint optimization of a wing using the class-shape-refinement-transformation method. Journal of Aircraft, 49(4):1091-1100.

[26]Su, H., Gu, L., Gong, C., 2015. Research on geometry modeling method based on three-dimensional CST parameterization technology. 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Dallas, USA.

[27]Wu, X.J., Zhang, W.W., Xiao, H., et al., 2015. A robust aerodynamic design for airfoil based on response surface method. Engineering Mechanics, 32(2):250-256 (in Chinese).

[28]Wu, Z.Y., Chen, Y., Yao, W., et al., 2015. A RBF neural network modeling method based on sensitivity analysis and Pareto law. 11th World Congress on Structural and Multidisciplinary Optimisation, Sydney, Australia.

[29]Yu, J.Z., Saeed, F., Paraschivoiu, I., 2003. Efficient optimized airfoil parameterization. 41st AIAA Aerospace Meeting & Exhibit, Reno, Nevada, USA.

[30]Zhang, D.H., Xi, S., Tian, D., 2014. Geometry control ability evaluation of classical airfoil parametric method. Advances in Aeronautical Science and Engineering, 5(3):281-288 (in Chinese).

[31]Zhao, D.J., Wang, Y.K., Cao, W.W., et al., 2015. Optimization of suction control on an airfoil using multi-island genetic algorithm. Procedia Engineering, 99:696-702.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE