Full Text:   <2519>

Summary:  <1833>

CLC number: V23; V43

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-08-04

Cited: 0

Clicked: 4041

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Rui Zhou

https://orcid.org/0000-0003-4620-9996

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2020 Vol.21 No.8 P.684-694

http://doi.org/10.1631/jzus.A1900624


Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray


Author(s):  Rui Zhou, Chi-bing Shen, Xuan Jin

Affiliation(s):  Science and Technology on Scramjet Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   cbshen@nudt.edu.cn

Key Words:  Pintle injector element, Liquid-liquid impingement, Primary breakup, Volume of fluid-to-discrete phase model (VOF-to-DPM) simulation, Adaptive mesh refinement (AMR) method


Share this article to: More <<< Previous Article|

Rui Zhou, Chi-bing Shen, Xuan Jin. Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray[J]. Journal of Zhejiang University Science A, 2020, 21(8): 684-694.

@article{title="Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray",
author="Rui Zhou, Chi-bing Shen, Xuan Jin",
journal="Journal of Zhejiang University Science A",
volume="21",
number="8",
pages="684-694",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900624"
}

%0 Journal Article
%T Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray
%A Rui Zhou
%A Chi-bing Shen
%A Xuan Jin
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 8
%P 684-694
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900624

TY - JOUR
T1 - Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray
A1 - Rui Zhou
A1 - Chi-bing Shen
A1 - Xuan Jin
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 8
SP - 684
EP - 694
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900624


Abstract: 
primary breakup in a liquid-liquid pintle injector element at different radial jet velocities is investigated to elucidate the impingement morphology, the formation of primary breakup spray half cone angle, the pressure distribution, the liquid diameter distribution, and the liquid velocity distribution. With a sufficient mesh resolution, the liquid morphology can be captured in a physically sound way. A mushroom tip is triggered by a larger radial jet velocity and breakup happens at the tip edge first. Different kinds of ligament breakup patterns due to aerodynamic force and surface tension are captured on the axial sheet. A high pressure core is spotted at the impinging point region. A larger radial jet velocity can feed more disturbances into the impinging point and the axial sheet, generate stronger vortices to promote the breakup process at a longer distance, and form a larger spray half cone angle. Because of the re-collision phenomenon the axial sheet diameter does not decrease monotonically. The inner rim on the axial sheet shows a larger diameter magnitude and a lower velocity magnitude due to surface tension. This paper is expected to provide a reference for the optimum design of a liquid-liquid pintle injector.

针栓式喷注器单元液/液撞击的一次破碎形态的仿真研究

目的:针对液/液针栓式喷注器单元,研究其在不同径向射流喷注速度下的一次破碎形态,并阐明在一次破碎下喷雾半锥角的形成、压力场分布、喷雾粒径分布与速度场分布.
创新点:通过流体体积函数转换离散相(VOF-to-DPM)模型,结合网格自适应(AMR)技术还原了针栓式喷注器单元液/液撞击的一次破碎形态.
方法:1. 通过VOF-to-DPM模型完成一次破碎过程中对液相的捕捉; 2. 采用计算流体动力学后处理(CFD-post)模块进行后处理,得到一次破碎下喷雾半锥角的形成以及压力场、喷雾粒径与速度场的分布云图; 3. 在仿真计算过程中使用AMR技术减少计算量,节约时间成本与计算资源.
结论:1. 速度大的径向射流在穿透轴向液膜后会形成一个蘑菇状的头部; 扰动在蘑菇状顶端下方形成涡,有助于蘑菇状顶端边缘破碎的发生. 2. 气动力和表面张力对轴向液膜破碎过程中产生的直液丝和环状液丝的破碎起到重要作用; 由于液滴的聚合现象,轴向液膜的直径在破碎过程中并不是单调递减的. 3. 喷雾半锥角的大小和径向射流速度的大小成正比; 一次破碎首先发生在轴向液膜前沿、径向射流头部以及撞击点附近. 4. 在表面张力的作用下,轴向液膜内边缘的速度较小,直径较大; 当径向射流的速度增大时,轴向液膜内边缘的速度值减小得更加明显.

关键词:针栓式喷注器单元; 液/液撞击; 一次破碎; VOF-to-DPM 模型; AMR技术

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cheng P, Li QL, Xu S, 2017. On the prediction of spray angle of liquid-liquid pintle injectors. Acta Astronautica, 138: 145-151.

[2]Cheng P, Li QL, Chen HY, 2019. Flow characteristics of a pintle injector element. Acta Astronautica, 154:61-66.

[3]Dombrowski N, 1963. The aerodynamic instability and disintegration of viscous liquid sheets. Chemical Engineering Science, 18:203-214.

[4]Dressler GA, 2000. TRW pintle engine heritage and performance characteristics. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Article 2000-3871.

[5]Dressler GA, 2006. Summary of deep throttling rocket engines with emphasis on Apollo LMDE. 42nd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Article 2006-5220.

[6]Elverum PS, Miller J, 1967. The descent engine for the lunar module. 3rd Propulsion Joint Specialist Conference, Article 1967-521.

[7]Fang XX, Shen CB, 2017. Study on atomization and combustion characteristics of LOX/methane pintle injectors. Acta Astronautica, 136:369-379.

[8]Giuliano TL, Adamski WM, 2007. CECE: a deep throttling demonstrator cryogenic engine for NASA’s lunar land. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2007-5480.

[9]Hasson D, 1964. Thickness distribution in a sheet formed by impinging jets. International Engineering Journal, 10(5):752-754.

[10]Herrmann M, 2008. A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. Journal of Computational Physics, 227(4):2674-2706.

[11]Herrmann M, 2010. Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow. Journal of Engineering for Gas Turbines and Power Transactions of the ASME, 132(6):1-10.

[12]James B, Jacob H, 2019. Spray cone formation from pintle-type injector systems in liquid rocket engine. AIAA SciTech 2019 Forum, 2019-0152.

[13]Kanmaniraja R, Keonwoong L, 2018. Effect of injection conditions on mixing performance of pintle injector for liquid rocket engines. Acta Astronautica, 150:105-116.

[14]Kazuki S, Shinji N, 2015. Optical measurements of ethanol/ liquid oxygen rocket engine combustor with planar pintle injector. 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015-3845.

[15]Kazuki S, Shinji N, 2017. Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector. Journal of Propulsion and Power, 33(2):514-521.

[16]Nardi RV, Pimenta A, 2015. Experiments with pintle injector design and development. 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015-3810.

[17]Ninish S, Nandakumar K, 2018. Spray characteristics of liquid-liquid pintle injector. Experimental Thermal and Fluid Science, 97:324-340.

[18]Son M, Jaye K, 2015. Effects of momentum ratio and Weber number on spray half angles of liquid controlled pintle injector. Journal of Thermal Science, 24(1):37-43.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE