Full Text:   <991>

Summary:  <387>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-10-21

Cited: 0

Clicked: 1259

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Gang Chen

https://orcid.org/0000-0002-7483-0045

Wen-tao HU

https://orcid.org/0000-0003-0930-7810

Da-wei JIANG

https://orcid.org/0000-0002-1890-4046

Sai WU

https://orcid.org/0000-0002-7903-1496

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.10 P.832-837

http://doi.org/10.1631/jzus.A2200156


Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems


Author(s):  Wen-tao HU, Da-wei JIANG, Sai WU, Ke CHEN, Gang CHEN

Affiliation(s):  Key Lab of Intelligent Computing Based Big Data of Zhejiang Province, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   cg@zju.edu.cn

Key Words:  Integrity constraint discovery, Intelligent railroad systems, Machine learning


Wen-tao HU, Da-wei JIANG, Sai WU, Ke CHEN, Gang CHEN. Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems[J]. Journal of Zhejiang University Science A, 2022, 23(10): 832-837.

@article{title="Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems",
author="Wen-tao HU, Da-wei JIANG, Sai WU, Ke CHEN, Gang CHEN",
journal="Journal of Zhejiang University Science A",
volume="23",
number="10",
pages="832-837",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200156"
}

%0 Journal Article
%T Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems
%A Wen-tao HU
%A Da-wei JIANG
%A Sai WU
%A Ke CHEN
%A Gang CHEN
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 10
%P 832-837
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200156

TY - JOUR
T1 - Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems
A1 - Wen-tao HU
A1 - Da-wei JIANG
A1 - Sai WU
A1 - Ke CHEN
A1 - Gang CHEN
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 10
SP - 832
EP - 837
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200156


Abstract: 
Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems

复杂完整性约束:在现代智能交通系统中衡量模型可信性

作者:胡文涛,江大伟,伍赛,陈珂,陈刚
机构:浙江大学,浙江省大数据智能计算重点实验室,中国杭州,310027
目的:由于使用的列车运行数据偏离系统应用的数据特征,现代智能交通系统部署的模型推理结果可能不可靠。本文旨在研究部署在系统中的模型使用的数据变化对模型性能的影响,通过研究衡量模型可信性方法,实现在现实场景中无需标注数据实时检测部署在系统中的模型可信性。
创新点:1.提出一种复杂完整性约束概念,在无标注数据的情况下,衡量模型使用数据的不安全程度。2.为实现现代智能交通系统实时检测模型的可信性,我们设计一种新颖的算法,利用位向量索引技术和规则推理系统,快速发现模型应用数据的复杂完整性约束。
方法:1.通过输入部署在现代智能交通系统模型中的训练数据,系统构建面向输入数据的索引向量从而避免对大规模数据进行多次。2.通过规则推理系统和支持度剪枝技术,将语意重复的冗余约束和一些无意义的约束忽略,得到有效的复杂完整性约束。3.利用完整性约束计算违反约束的数据在数据集中的比例从而衡量模型使用的数据不安全程度。4.通过使用真实的列车运行数据集测试,分析复杂完整性约束衡量的数据不安全程度和模型性能的关系,从而验证复杂完整性约束的可行性和有效性。
结论:1.模型使用的数据偏离模型训练数据特征会影响模型的性能。2.通过发现复杂完整性约束,衡量模型使用的数据不安全程度,可以快速检测部署的模型可信性。3.通过对模型可信性的研究,可以无需标注而快速发现不可信的模型,从而及时重新部署可信模型,提升现代智能交通系统的稳定性。

关键词:现代智能交通系统;列车运行控制;约束发现;可信机器学习

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AkR, FinkO, ZioE, 2016. Two machine learning approaches for short-term wind speed time-series prediction. IEEE Transactions on Neural Networks and Learning Systems, 27(8):1734-1747.

[2]AzzedineB, ZhengLN, AlfandiO, 2021. Outlier detection: methods, models, and classification. ACM Computing Surveys, 53(3):1-37.

[3]BaiQB, BediAS, AgarwalM, et al., 2022. Achieving zero constraint violation for constrained reinforcement learning via primal-dual approach. Proceedings of the 36th AAAI Conference on Artificial Intelligence, p.3682-3689.

[4]Berti-ÉquilleL, HarmouchH, NaumannF, et al., 2018. Discovery of genuine functional dependencies from relational data with missing values. Proceedings of the VLDB Endowment, 11(8):880-892.

[5]BleifußT, KruseS, NaumannF, 2017. Efficient denial constraint discovery with hydra. Proceedings of the VLDB Endowment, 11(3):311-323.

[6]CaruccioL, DeufemiaV, PoleseG, 2016. Relaxed functional dependencies—a survey of approaches. IEEE Transactions on Knowledge and Data Engineering, 28(1):147-165.

[7]ChenHT, JiangB, DingSX, et al., 2022. Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives. IEEE Transactions on Intelligent Transportation Systems, 23(3):‍‍1700-1716.

[8]FanWF, GeertsF, LiJZ, et al., 2011. Discovering conditional functional dependencies. IEEE Transactions on Knowledge and Data Engineering, 23(5):683-698.

[9]FanWF, HuCM, LiuXL, et al., 2020. Discovering graph functional dependencies. ACM Transactions on Database Systems, 45(3):15.

[10]HoLV, NguyenHD, de RoeckG, et al., 2021. Damage detection in steel plates using feed-forward neural network coupled with hybrid particle swarm optimization and gravitational search algorithm. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(6):467-480.

[11]HuQX, LongJS, WangSK, et al., 2021. A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(10):777-791.

[12]HuWT, ZhangDX, JiangDW, et al., 2020. AUDITOR: a system designed for automatic discovery of complex integrity constraints in relational databases. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, p.2697-2700.

[13]HuhtalaY, KärkkäinenJ, PorkkaP, et al., 1999. Tane: an efficient algorithm for discovering functional and approximate dependencies. The Computer Journal, 42(2):‍100-111.

[14]KieuT, YangB, GuoCJ, et al., 2019. Outlier detection for time series with recurrent autoencoder ensembles. Proceedings of the 28th International Joint Conference on Artificial Intelligence, p.2725-2732.

[15]KossmannJ, PapenbrockT, NaumannF, 2022. Data dependencies for query optimization: a survey. The VLDB Journal, 31(1):‍1-22.

[16]KruseS, NaumannF, 2018. Efficient discovery of approximate dependencies. Proceedings of the VLDB Endowment, 11(7):759-772.

[17]LivshitsE, KimelfeldB, RoyS, 2020. Computing optimal repairs for functional dependencies. ACM Transactions on Database Systems, 45(1):4.

[18]MaliniN, PushpaM, 2017. Analysis on credit card fraud identification techniques based on KNN and outlier detection. Proceedings of the 3rd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, p.255-258.

[19]PenaEHM, de AlmeidaEC, NaumannF, 2019. Discovery of approximate (and exact) denial constraints. Proceedings of the VLDB Endowment, 13(3):266-278.

[20]PenaEHM, de AlmeidaEC, NaumannF, 2021. Fast detection of denial constraint violations. Proceedings of the VLDB Endowment, 15(4):859-871.

[21]QahtanA, TangN, OuzzaniM, et al., 2020. Pattern functional dependencies for data cleaning. Proceedings of the VLDB Endowment, 13(5):684-697.

[22]RanjanKG, TripathyDS, PrustyBR, et al., 2021. An improved sliding window prediction-based outlier detection and correction for volatile time-series. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 34(1):e2816.

[23]SharmaV, ChandelSS, 2013. Performance and degradation analysis for long term reliability of solar photovoltaic systems: a review. Renewable and Sustainable Energy Reviews, 27:753-767.

[24]TanP, LiXF, XuJM, et al., 2020. Catenary insulator defect detection based on contour features and gray similarity matching. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(1):64-73.

[25]WuPZ, YangW, WangHC, et al., 2020. GDS: general distributed strategy for functional dependency discovery algorithms. Proceedings of the 25th International Conference on Database Systems for Advanced Applications, p.270-278.

[26]ZhouP, LiT, ZhaoCF, et al., 2020. Numerical study on the flow field characteristics of the new high-speed maglev train in open air. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(5):366-381.

[27]ZhuL, YuFR, WangYG, et al., 2019. Big data analytics in intelligent transportation systems: a survey. IEEE Transactions on Intelligent Transportation Systems, 20(1):‍383-398.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE