Full Text:   <2537>

Summary:  <15>

CLC number: 

On-line Access: 2026-02-02

Received: 2024-04-11

Revision Accepted: 2024-09-27

Crosschecked: 2026-02-02

Cited: 0

Clicked: 1617

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiongfei QU

https://orcid.org/0000-0003-0597-8916

Nan WU

https://orcid.org/0000-0001-7844-1103

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2026 Vol.27 No.2 P.169-182

http://doi.org/10.1631/jzus.A2400192


Mitigating pre-focal heating using a spherical Fibonacci lattice high-intensity focused ultrasound array and a near-field focusing strategy


Author(s):  Xiongfei QU, Nan WU, Yazhu CHEN, Guofeng SHEN

Affiliation(s):  School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; more

Corresponding email(s):   shenguofeng@sjtu.edu.cn

Key Words:  High-intensity focused ultrasound (HIFU), Phased array, Element arrangement, Focus steering


Share this article to: More <<< Previous Article|

Xiongfei QU, Nan WU, Yazhu CHEN, Guofeng SHEN. Mitigating pre-focal heating using a spherical Fibonacci lattice high-intensity focused ultrasound array and a near-field focusing strategy[J]. Journal of Zhejiang University Science A, 2026, 27(2): 169-182.

@article{title="Mitigating pre-focal heating using a spherical Fibonacci lattice high-intensity focused ultrasound array and a near-field focusing strategy",
author="Xiongfei QU, Nan WU, Yazhu CHEN, Guofeng SHEN",
journal="Journal of Zhejiang University Science A",
volume="27",
number="2",
pages="169-182",
year="2026",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400192"
}

%0 Journal Article
%T Mitigating pre-focal heating using a spherical Fibonacci lattice high-intensity focused ultrasound array and a near-field focusing strategy
%A Xiongfei QU
%A Nan WU
%A Yazhu CHEN
%A Guofeng SHEN
%J Journal of Zhejiang University SCIENCE A
%V 27
%N 2
%P 169-182
%@ 1673-565X
%D 2026
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400192

TY - JOUR
T1 - Mitigating pre-focal heating using a spherical Fibonacci lattice high-intensity focused ultrasound array and a near-field focusing strategy
A1 - Xiongfei QU
A1 - Nan WU
A1 - Yazhu CHEN
A1 - Guofeng SHEN
J0 - Journal of Zhejiang University Science A
VL - 27
IS - 2
SP - 169
EP - 182
%@ 1673-565X
Y1 - 2026
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400192


Abstract: 
focus steering technique plays a crucial role in various high-intensity focused ultrasound (HIFU) treatment scenarios. However, due to current technological limitations, the focus quality degrades rapidly and prefocal grating lobes arise with increasing focus-shifting distance, which may adversely affect the safety of the treatment. To enlarge the focal steering range of a phased array, a novel method for array element arrangement is proposed in this study, which can increase both the safety and the efficient steering range of the focus. Additionally, a “near-field focusing” strategy for ablation using an HIFU phased array is introduced. Experimental results demonstrate that this strategy not only effectively reduces the average acoustic intensity at the medium’s surface but also inhibits temperature elevation in the prefocal region. Thus, this approach could mitigate the risks of skin burn and abdominal edema during clinical HIFU therapy.

使用球面斐波那契网格排布的聚焦超声阵列结合近场聚焦策略减轻焦域前场过热风险

作者:屈雄飞1,吴楠2,陈亚珠1,沈国峰1
机构:1上海交通大学,生物医学工程学院,中国上海,200030;2上海沈德无创时代医疗科技有限公司,中国上海,200233
目的:聚焦超声在临床治疗过程中可能会对声路径上的健康组织造成非预期加热风险。本文旨在讨论相控阵列排布设计对声场分布的影响,研究球面聚焦超声阵列排布的设计方法以及聚焦加热策略,以提高聚焦超声的治疗安全性。
创新点:1.提出基于斐波那契网格点的球面相控聚焦超声换能器阵列的设计方法;2.提出一种用于相控聚焦超声治疗的"近场聚焦"加热策略,以抑制焦点前场过热风险。
方法:1.通过分析已有的换能器设计思路,总结出相控聚焦超声换能器的设计准则,即让阵元在球面上分布尽量均匀的前提下避免任何形式的对称性,进而得到球面斐波那契网格排布设计方法(图1和2a);2.通过对具有相同几何参数的斐波那契网格排布设计以及随机排布换能器进行声场仿真,评估基于球面斐波那契网格排布换能器的声学性能(图7~9);3.使用球面斐波那契网格排布换能器并结合"近场聚焦"加热策略,进行体膜加热实验,验证其对焦点前场温升的抑制效果(图11)。
结论:1.使用球面斐波那契网格排布可以使阵元分布尽量均匀且无对称性;2.使用这种方法设计的相控聚焦超声换能器具有较好的偏焦点栅瓣抑制能力;3.使用这种方法设计的相控聚焦超声换能器结合"近场聚焦"策略,可以有效抑制聚焦超声治疗过程中声路径上的过热风险。

关键词:高强度聚焦超声;阵元排布;焦点偏转;球面斐波那契网格

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AgrawalM, GargK, SamalaR, et al., 2021. Outcome and complications of MR guided focused ultrasound for essential tremor: a systematic review and meta-analysis. Frontiers in Neurology, 12:654711.

[2]BachuVS, KeddaJ, SukI, et al., 2021. High-intensity focused ultrasound: a review of mechanisms and clinical applications. Annals of Biomedical Engineering, 49(9):1975-1991.

[3]BrauchartJS, GrabnerPJ, 2015. Distributing many points on spheres: minimal energy and designs. Journal of Complexity, 31(3):293-326.

[4]ChaussyCG, ThüroffS, 2017. High-intensity focused ultrasound for the treatment of prostate cancer: a review. Journal of Endourology, 31(S1):S-30-S-37.

[5]ChukkapalliG, KarpikSR, EthierCR, 1999. A scheme for generating unstructured grids on spheres with application to parallel computation. Journal of Computational Physics, 149(1):114-127.

[6]DamianouC, HynynenK, 1993. Focal spacing and near-field heating during pulsed high temperature ultrasound therapy. Ultrasound in Medicine & Biology, 19(9):777-787.

[7]DaumDR, HynynenK, 1998. Thermal dose optimization via temporal switching in ultrasound surgery. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 45(1):208-215.

[8]DiederichCJ, HynynenK, 1999. Ultrasound technology for hyperthermia. Ultrasound in Medicine & Biology, 25(6):871-887.

[9]EllensN, PulkkinenA, SongJ, et al., 2011. The utility of sparse 2D fully electronically steerable focused ultrasound phased arrays for thermal surgery: a simulation study. Physics in Medicine and Biology, 56(15):4913-4932.

[10]Garcia-GutierrezCM, Becerra-HerrejonH, Garcia-BecerraCA, et al., 2022. High intensity focused ultrasound (HIFU) in prostate diseases (benign prostatic hyperplasia (BPH) and prostate cancer). In: Arnouk H (Ed.), Advances in Soft Tissue Tumors. IntechOpen, London, UK.

[11]GavrilovLR, HandJW, 2000. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47(1):125-139.

[12]GonzálezÁ, 2010. Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices. Mathematical Geosciences, 42(1):49-64.

[13]GossSA, FrizzellLA, KouzmanoffJT, et al., 1996. Sparse random ultrasound phased array for focal surgery. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6):1111-1121.

[14]HaarGT, CoussiosC, 2007. High intensity focused ultrasound: physical principles and devices. International Journal of Hyperthermia, 23(2):89-104.

[15]HüttigC, StemmerK, 2008. The spiral grid: a new approach to discretize the sphere and its application to mantle convection. Geochemistry, Geophysics, Geosystems, 9(2):Q02018.

[16]JiYS, ZhuJQ, ZhuLL, et al., 2020. High-intensity focused ultrasound ablation for unresectable primary and metastatic liver cancer: real-world research in a Chinese tertiary center with 275 cases. Frontiers in Oncology, 10:519164.

[17]KennedyJE, Ter HaarGR, CranstonD, 2003. High intensity focused ultrasound: surgery of the future? The British Journal of Radiology, 76(909):590-599.

[18]KimYS, KeserciB, PartanenA, et al., 2012. Volumetric MR-HIFU ablation of uterine fibroids: role of treatment cell size in the improvement of energy efficiency. European Journal of Radiology, 81(11):3652-3659.

[19]KlímaK, PickM, ProsZ, 1981. On the problem of equal area block on a sphere. Studia Geophysica et Geodaetica, 25(1):24-35.

[20]KociubaJ, ŁozińskiT, ZgliczyńskaM, et al., 2023. Adverse events and complications after magnetic resonance-guided focused ultrasound (MRgFUS) therapy in uterine fibroids–a systematic review and future perspectives. International Journal of Hyperthermia, 40(1):2174274.

[21]KöhlerMO, MougenotC, QuessonB, et al., 2009. Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry. Medical Physics, 36(8):3521-3535.

[22]LamMK, HuismanM, NijenhuisRJ, et al., 2015. Quality of MR thermometry during palliative MR-guided high-intensity focused ultrasound (MR-HIFU) treatment of bone metastases. Journal of Therapeutic Ultrasound, 3(1):5.

[23]MarinovaM, GhaeiS, ReckerF, et al., 2021. Efficacy of ultrasound-guided high-intensity focused ultrasound (USgHIFU) for uterine fibroids: an observational single-center study. International Journal of Hyperthermia, 38(2):30-38.

[24]MougenotC, KöhlerMO, EnholmJ, et al., 2011. Quantification of near-field heating during volumetric MR-HIFU ablation. Medical Physics, 38(1):272-282.

[25]MullerME, 1959. A note on a method for generating points uniformly on n-dimensional spheres. Communications of the ACM, 2(4):19-20.

[26]QuadriSA, WaqasM, KhanI, et al., 2018. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurgical Focus, 44(2):E16.

[27]RakhmanovEA, SaffEB, ZhouYM, 1994. Minimal discrete energy on the sphere. Mathematical Research Letters, 1(6):647-662.

[28]RamaekersP, de GreefM, BerrietR, et al., 2017a. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral. Physics in Medicine and Biology, 62(12):5021-5045.

[29]RamaekersP, RiesM, MoonenCTW, et al., 2017b. Improved intercostal HIFU ablation using a phased array transducer based on Fermat’s spiral and Voronoi tessellation: a numerical evaluation. Medical Physics, 44(3):1071-1088.

[30]RosnitskiyPB, VysokanovBA, GavrilovLR, et al., 2018. Method for designing multielement fully populated random phased arrays for ultrasound surgery applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(4):630-637.

[31]RosnitskiyPB, SapozhnikovOA, GavrilovLR, et al., 2020. Designing fully populated phased arrays for noninvasive ultrasound surgery with controlled degree of irregularity in the arrangement of elements. Acoustical Physics, 66(4):352-361.

[32]SwinbankR, James PurserR, 2006. Fibonacci grids: a novel approach to global modelling. Quarterly Journal of the Royal Meteorological Society, 132(619):1769-1793.

[33]Ter HaarGR, 2001. High intensity focused ultrasound for the treatment of tumors. Echocardiography, 18(4):317-322.

[34]UchidaT, NakanoM, HongoS, et al., 2012. High-intensity focused ultrasound therapy for prostate cancer. International Journal of Urology, 19(3):187-201.

[35]VyasU, ChristensenD, 2012. Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 59(6):1093-1100.

[36]ZhaoH, YangGW, WangDY, et al., 2010. Concurrent gemcitabine and high-intensity focused ultrasound therapy in patients with locally advanced pancreatic cancer. Anti-Cancer Drugs, 21(4):447-452.

[37]ZhouYF, 2011. High intensity focused ultrasound in clinical tumor ablation. World Journal of Clinical Oncology, 2(1):8-27.

[38]ZiglioliF, BaciarelloM, MasperoG, et al., 2020. Oncologic outcome, side effects and comorbidity of high-intensity focused ultrasound (HIFU) for localized prostate cancer. A review. Annals of Medicine and Surgery, 56:110-115.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE