Full Text:   <1657>

Summary:  <213>

Suppl. Mater.: 

CLC number: 

On-line Access: 2026-01-12

Received: 2025-05-25

Revision Accepted: 2025-07-06

Crosschecked: 2026-01-12

Cited: 0

Clicked: 1384

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Daxi GENG

https://orcid.org/0000-0003-3591-4630

Lianxing LIU

https://orcid.org/0009-0003-2848-4465

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.12 P.1179-1196

http://doi.org/10.1631/jzus.A2500209


Elliptical ultrasonic side milling for improved surface integrity and fatigue resistance of thin-walled Ti6Al4V components


Author(s):  Lianxing LIU, Xinggang JIANG, Enze YING, Zhefei SUN, Daxi GENG, Deyuan ZHANG

Affiliation(s):  School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; more

Corresponding email(s):   zhangdy@buaa.edu.cn, gengdx@buaa.edu.cn

Key Words:  Ultrasonic peening side milling (UPSM), Ti6Al4V, Surface integrity, Fatigue performance, Thin-walled components


Lianxing LIU, Xinggang JIANG, Enze YING, Zhefei SUN, Daxi GENG, Deyuan ZHANG. Elliptical ultrasonic side milling for improved surface integrity and fatigue resistance of thin-walled Ti6Al4V components[J]. Journal of Zhejiang University Science A, 2025, 26(12): 1179-1196.

@article{title="Elliptical ultrasonic side milling for improved surface integrity and fatigue resistance of thin-walled Ti6Al4V components",
author="Lianxing LIU, Xinggang JIANG, Enze YING, Zhefei SUN, Daxi GENG, Deyuan ZHANG",
journal="Journal of Zhejiang University Science A",
volume="26",
number="12",
pages="1179-1196",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2500209"
}

%0 Journal Article
%T Elliptical ultrasonic side milling for improved surface integrity and fatigue resistance of thin-walled Ti6Al4V components
%A Lianxing LIU
%A Xinggang JIANG
%A Enze YING
%A Zhefei SUN
%A Daxi GENG
%A Deyuan ZHANG
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 12
%P 1179-1196
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2500209

TY - JOUR
T1 - Elliptical ultrasonic side milling for improved surface integrity and fatigue resistance of thin-walled Ti6Al4V components
A1 - Lianxing LIU
A1 - Xinggang JIANG
A1 - Enze YING
A1 - Zhefei SUN
A1 - Daxi GENG
A1 - Deyuan ZHANG
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 12
SP - 1179
EP - 1196
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2500209


Abstract: 
ti6Al4V alloy is critical for thin-walled aerospace components, yet conventional methods for its surface enhancement struggle to balance efficiency and precision. While ultrasonic vibration milling has been demonstrated to improve fatigue performance, its strengthening mechanism requires further investigation. Additionally, its application in fatigue-critical side milling remains underexplored. To address this gap, we introduce the method of ultrasonic peening side milling (UPSM), which integrates elliptical vibration into side milling to achieve simultaneous machining and surface strengthening. Theoretical and finite element analyses are performed to elucidate the mechanisms of residual stress generation and plastic deformation in UPSM and two-pass UPSM (TUPSM). Our experimental results demonstrate that the UPSM method reduces surface defects. At a vibration amplitude of 8 μm, UPSM increases the surface residual compressive stress by 47.4% and the thickness of subsurface plastic deformation layer by 91.5% as compared to conventional milling (CM). TUPSM amplifies these effects, achieving a 55.5% increase in residual compressive stress. Fatigue tests reveal 3.38-fold (for UPSM) and 3.76-fold (for TUPSM) improvement in fatigue life over CM, a phenomenon which is attributed to the subsurface crack initiation and grain refinement induced by ultrasonic ironing and impact effects. This work establishes UPSM as an integrated and cost-effective solution for enhancing fatigue performance in thin-walled ti6Al4V components, overcoming the limitations of conventional methods and advancing between precision machining and strengthening treatments.

椭圆超声喷丸侧铣用于强化薄壁Ti6Al4V构件的表面完整性与抗疲劳性能

作者:刘连星1,2,姜兴刚1,2,应恩泽1,2,孙哲飞1,2,耿大喜1,2,张德远1,2
机构:1北京航空航天大学,机械工程及自动化学院,中国北京,100191;2北京航空航天大学,仿生与微纳系统研究所,中国北京,100191
目的:针对薄壁钛合金(Ti6Al4V)构件表面强化效率与效果难以兼顾,以及关键疲劳区域侧铣加工强化研究不足的问题,本文提出椭圆超声喷丸侧铣(UPSM)及双程超声喷丸侧铣(TUPSM)新方法,旨在实现加工与强化同步进行,以探究其表面强化机理与疲劳性能提升效果。
创新点:1.提出适用于薄壁结构关键疲劳区域侧铣加工的UPSM方法,并首创TUPSM工艺,实现加工与强化的高效集成;2.通过运动学分析与二维切削仿真,揭示UPSM中刀具后刀面熨压效应和切削刃冲击效应的双重表面强化机理,以及TUPSM的累积强化机制;3.系统阐明超声振幅和加工循环次数对表面形貌、残余应力、亚表层塑性变形层及疲劳性能的调控作用。
方法:1.建立UPSM刀具运动轨迹模型,并分析其切削与强化过程(图1~3);2.采用ABAQUS软件进行二维有限元切削仿真,并对比分析常规切削(CM)、UPSM及TUPSM过程中的应力演化、塑性变形(PEEQ)和残余应力(S11)的分布特征,以揭示强化机理(图4、5、S1和S2);3.通过实验研究,对比分析不同工艺下的切屑形态、表面形貌、表面粗糙度、表面残余应力及亚表层塑性变形层(图9~13);4.进行高周疲劳寿命测试,并分析疲劳源位置、裂纹扩展路径及疲劳条带特征,以揭示疲劳性能提升机制(图14~17和S3)。
结论:1.UPSM产生带有振动纹理的卷曲切屑,且振幅增至8 μm时出现局部断屑特征;TUPSM产生较为细小的破碎切屑。2.相较于CM,UPSM显著减少表面划痕、鳞片等缺陷。3.UPSM通过刀具后刀面熨压和切削刃冲击效应实现显著的表面强化;在8 μm振幅下,表面残余压应力和亚表层塑性变形层厚度较CM分别提升47.4%和91.5%;TUPSM通过叠加二次熨压和冲击效应,进一步强化表面,且残余应力较CM提升55.5%。4.UPSM显著提升试件疲劳寿命,并使疲劳源萌生位置从表面转移至亚表面甚至内部;在 8μm振幅下,UPSM和TUPSM的疲劳寿命分别达到CM的3.38倍和3.76倍。5.UPSM和TUPSM被证明是一种有前景的钛合金强化技术,可有效提升薄壁构件的疲劳性能,同时实现精密加工。

关键词:超声喷丸侧铣;Ti6Al4V;表面完整性;疲劳性能;表面强化;精密加工;薄壁结构

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BrehlDE, DowTA, 2008. Review of vibration-assisted machining. Precision Engineering, 32(3):153-172.

[2]CelayaA, de LacalleLNL, CampaFJ, et al., 2010. Ultrasonic assisted turning of mild steels. International Journal of Materials and Product Technology, 37(1-2):60-70.

[3]de la Maza García ÁS, de Lacalle MarcaideLNL, de Pissón CarunchoGM, 2025. Prestress assisted machining: achieving high surface integrity in thin wall milling. Results in Engineering, 26:105491.

[4]la MonacaA, MurrayJW, LiaoZR, et al., 2021. Surface integrity in metal machining-part II: functional performance. International Journal of Machine Tools and Manufacture, 164:103718.

[5]LiGX, XieWB, WangHT, et al., 2023. Optimizing processing parameters and surface quality of TC18 via ultrasonic-assisted milling (UAM): an experimental study. Micromachines (Basel), 14(6):1111.

[6]LiX, YangSL, LuZH, et al., 2020. Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens. Journal of Materials Processing Technology, 275:116386.

[7]LiaoZR, la MonacaA, MurrayJ, et al., 2021. Surface integrity in metal machining-Part I: fundamentals of surface characteristics and formation mechanisms. International Journal of Machine Tools and Manufacture, 162:103687.

[8]LiuJJ, JiangXG, HanX, et al., 2019. Influence of parameter matching on performance of high-speed rotary ultrasonic elliptical vibration-assisted machining for side milling of titanium alloys. The International Journal of Advanced Manufacturing Technology, 101(5-8):1333-1348.

[9]LiuLX, JiangXG, YingEZ, et al., 2025. High-performance milling of Ti-6Al-4V through rotary ultrasonic elliptical milling with anticlockwise elliptical vibration. Journal of Zhejiang University-SCIENCE A, 26(8):707-722.

[10]LiuYH, GengDX, ShaoZY, et al., 2021. A study on strengthening and machining integrated ultrasonic peening drilling of Ti-6Al-4V. Materials & Design, 212:110238.

[11]LiuYH, ZhangDY, GengDX, et al., 2023. Ironing effect on surface integrity and fatigue behavior during ultrasonic peening drilling of Ti-6Al-4V. Chinese Journal of Aeronautics, 36(5):486-498.

[12]LuHF, WangZ, CaiJ, et al., 2021. Effects of laser shock peening on the hot corrosion behaviour of the selective laser melted Ti6Al4V titanium alloy. Corrosion Science, 188:109558.

[13]LuHF, WuLJ, WeiHL, et al., 2022. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening. Additive Manufacturing, 55:102877.

[14]LüQQ, ChaiYB, YangLQ, et al., 2023. Experimental study on cutting force and surface integrity of TC4 titanium alloy with longitudinal ultrasonic-assisted milling. Coatings, 13(10):1725.

[15]MedvedevAE, LuiEW, EdwardsD, et al., 2021. Improved ballistic performance of additively manufactured Ti6Al4V with α-β lamellar microstructures. Materials Science and Engineering: A, 825:141888.

[16]MoriwakiT, ShamotoE, 1995. Ultrasonic elliptical vibration cutting. CIRP Annals, 44(1):31-34.

[17]NiCB, ZhuLD, 2020. Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. Journal of Materials Processing Technology, 278:116518.

[18]NovovicD, DewesRC, AspinwallDK, et al., 2004. The effect of machined topography and integrity on fatigue life. International Journal of Machine Tools and Manufacture, 44(2-3):125-134.

[19]PangY, FengPF, WangJJ, et al., 2021. Performance analysis of the longitudinal-torsional ultrasonic milling of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 113(5-6):1255-1266.

[20]QinZ, LiB, ChenR, et al., 2023. Effect of shot peening on high cycle and very high cycle fatigue properties of Ni-based superalloys. International Journal of Fatigue, 168:107429.

[21]RodríguezA, de LacalleLNL, CelayaA, et al., 2012. Surface improvement of shafts by the deep ball-burnishing technique. Surface and Coatings Technology, 206(11-12):2817-2824.

[22]RodríguezA, CallejaA, de LacalleLNL, et al., 2019. Burnishing of FSW aluminum Al-Cu-Li components. Metals, 9(2):260.

[23]RodríguezA, de LacalleLNL, PereiraO, et al., 2020. Isotropic finishing of austempered iron casting cylindrical parts by roller burnishing. The International Journal of Advanced Manufacturing Technology, 110(3-4):753-761.

[24]SeenathAA, SarhanAAD, 2024. A state-of-the-art review on cutting tool materials and coatings in enhancing the tool performance in machining the superior nickel-based superalloys. Arabian Journal for Science and Engineering, 49(8):10203-10236.

[25]ShamotoE, MoriwakiT, 1999. Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Annals, 48(1):441-444.

[26]SuárezA, VeigaF, de LacalleLNL, et al., 2016. Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-alloy 718. Journal of Materials Engineering and Performance, 25(11):5076-5086.

[27]SuárezA, VeigaF, PolvorosaR, et al., 2019. Surface integrity and fatigue of non-conventional machined alloy 718. Journal of Manufacturing Processes, 48:44-50.

[28]SunZF, GengDX, GuoHL, et al., 2024. Introducing transversal vibration in twist drilling: material removal mechanisms and surface integrity. Journal of Materials Processing Technology, 325:118296.

[29]TeimouriR, 2025. A framework toward fatigue life modeling of machining process verified in burnishing. Mechanical Systems and Signal Processing, 223:111923.

[30]TeimouriR, GrabowskiM, 2024. Mechanistic model of fatigue in ultrasonic assisted machining. Materials (Basel), 17(19):4889.

[31]TeimouriR, GrabowskiM, 2025. Effect of ultrasonic vibration on fatigue life of inconel 718 machined by high-speed milling: physics-enhanced machine learning approach. Mechanical Systems and Signal Processing, 224:112115.

[32]TeimouriR, SkoczypiecS, 2024. A bottom-up multi-physics model correlating burnishing factors to fatigue life. Measurement, 234:114872.

[33]TeimouriR, AminiS, GuaglianoM, 2019. Analytical modeling of ultrasonic surface burnishing process: evaluation of residual stress field distribution and strip deflection. Materials Science and Engineering: A, 747:208-224.

[34]WangGY, XuWY, LiCH, et al., 2024. Study on design of conical arc side-edge milling cutter and cutting performance under ultrasonic-assisted condition. The International Journal of Advanced Manufacturing Technology, 132(3-4):1411-1423.

[35]WangY, HuangS, ShengJ, et al., 2024. Strengthening effect of laser peening on fatigue performance and life extension of laser cladded IN718 nickel-based alloy parts. International Journal of Fatigue, 180:108081.

[36]WangYJ, HaoEK, ZhaoXQ, et al., 2022. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater. Journal of Materials Science & Technology, 100:169-181.

[37]WangZM, JiaYF, ZhangXC, et al., 2019. Effects of different mechanical surface enhancement techniques on surface integrity and fatigue properties of Ti-6Al-4V: a review. Critical Reviews in Solid State and Materials Sciences, 44(6):445-469.

[38]XueNP, WuQ, ZhangY, et al., 2023. Review on research progress and comparison of different residual stress strengthening methods for titanium alloys. Engineering Failure Analysis, 144:106937.

[39]YangZC, ZhuLD, ZhangGX, et al., 2020. Review of ultrasonic vibration-assisted machining in advanced materials. International Journal of Machine Tools and Manufacture, 156:103594.

[40]YaoJ, LiX, DuBR, et al., 2024. Research status of influence mechanism of surface integrity on fatigue behavior of metal workpieces: a review. The International Journal of Advanced Manufacturing Technology, 131(7-8):3401-3419.

[41]YingEZ, ZhouZH, GengDX, et al., 2024. High-efficiency ultrasonic assisted drilling of CFRP/Ti stacks under non-separation type and dry conditions. Journal of Zhejiang University-SCIENCE A, 25(4):275-291.

[42]YuanX, YueZF, WenSF, et al., 2015. Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4. International Journal of Fatigue, 77:78-85.

[43]ZhangGH, LuXF, LiJQ, et al., 2022. In-situ grain structure control in directed energy deposition of Ti6Al4V. Additive Manufacturing, 55:102865.

[44]ZhangZM, TongJL, ZhaoJS, et al., 2021. Experimental study on surface residual stress of titanium alloy curved thin-walled parts by ultrasonic longitudinal-torsional composite milling. The International Journal of Advanced Manufacturing Technology, 115(4):1021-1035.

[45]ZhengK, LiaoWH, DongQ, et al., 2018. Friction and wear on titanium alloy surface machined by ultrasonic vibration-assisted milling. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(9):411.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE