Full Text:   <3808>

CLC number: Q81

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 16

Clicked: 6419

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.2 P.121-131

http://doi.org/10.1631/jzus.B0710307


Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor


Author(s):  Li-jiang WANG, Chun-sheng WU, Zhao-ying HU, Yuan-fan ZHANG, Rong LI, Ping WANG

Affiliation(s):  Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   cnpwang@zju.edu.cn

Key Words:  Biosensor, Escherichia coli O157:H7, Immunosensor, Layer-by-layer self-assembly (LBL-SA), Quartz crystal microbalance (QCM)


Li-jiang WANG, Chun-sheng WU, Zhao-ying HU, Yuan-fan ZHANG, Rong LI, Ping WANG. Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor[J]. Journal of Zhejiang University Science B, 2008, 9(2): 121-131.

@article{title="Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor",
author="Li-jiang WANG, Chun-sheng WU, Zhao-ying HU, Yuan-fan ZHANG, Rong LI, Ping WANG",
journal="Journal of Zhejiang University Science B",
volume="9",
number="2",
pages="121-131",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0710307"
}

%0 Journal Article
%T Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor
%A Li-jiang WANG
%A Chun-sheng WU
%A Zhao-ying HU
%A Yuan-fan ZHANG
%A Rong LI
%A Ping WANG
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 2
%P 121-131
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0710307

TY - JOUR
T1 - Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor
A1 - Li-jiang WANG
A1 - Chun-sheng WU
A1 - Zhao-ying HU
A1 - Yuan-fan ZHANG
A1 - Rong LI
A1 - Ping WANG
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 2
SP - 121
EP - 131
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0710307


Abstract: 
By means of the specific immuno-recognition and ultra-sensitive mass detection, a quartz crystal microbalance (QCM) biosensor for Escherichia coli O157:H7 detection was developed in this work. As a suitable surfactant, 16-mercaptohexadecanoic acid (MHDA) was introduced onto the Au surface of QCM, and then self-assembled with N-hydroxysuccinimide (NHS) raster as a reactive intermediate to provide an active interface for the specific antibody immobilization. The binding of target bacteria with the immobilized antibodies decreased the sensor’s resonant frequency, and the frequency shift was correlated to the bacterial concentration. The stepwise assembly of the immunosensor was characterized by means of the electrochemical techniques. Using the immersion-dry-immersion procedure, this QCM biosensor could detect 2.0×102 colony forming units (CFU)/ml E. coli O157:H7. In order to reduce the fabrication time, a polyelectrolyte layer-by-layer self-assembly (LBL-SA) method was adopted for fast construction. Finally, the reproducibility of this biosensor was discussed.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Asanov, A.N., Wilson, W.W., Oldham, P.B., 1998. Regenerable biosensor platform: A total internal reflection fluorescence cell with electrochemical control. Anal. Chem., 70(6):1156-1163.

[2] Babacan, S., Pivarnik, P., Letcher, S., Rand, A.G., 2000. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens. Bioelectron., 15(11-12):615-621.

[3] Berganza, J., Olabarria, G., Garcia, R., Verdoy, D., Rebollo, A., Arana, S., 2007. DNA microdevice for electrochemical detection of Escherichia coli O157:H7 molecular markers. Biosens. Bioelectron., 22(9-10):2132-2137.

[4] Berkenpas, E., Millard, P., Pereira da Cunha, M., 2006. Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosens. Bioelectron., 21(12):2255-2262.

[5] CDC (Centers for Disease Control and Prevention), 2006. Ongoing Multistate Outbreak of Escherichia coli Serotype O157:H7 Infections Associated with Consumption of Fresh Spinach. US. Http://www.cdc.gov.mill1.sjlibrary.org/mmwr/preview/mmwrhtml/mm55d926a1.htm

[6] Demarco, D.R., Lim, D.V., 2002. Detection of Escherichia coli O157:H7 in 10- and 25-gram ground beef samples with evanescent-wave biosensor with silica and polystyrene waveguides. J. Food Prot., 65(4):596-602.

[7] Fung, Y.S., Wong, Y.Y., 2001. Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution. Anal. Chem., 73(21):5302-5309.

[8] Jin, H.Y., Tao, K.H., Li, Y.X., Li, F.Q., Li, S.Q., 2005. Microarray analysis of Escherichia coli O157:H7. World J. Gastroenterol., 11(37):5811-5815.

[9] Johnston, L.M., Elhanafi, D., Drake, M., Jaykus, L.A., 2005. A simple method for the direct detection of Salmonella and Escherichia coli O157:H7 from raw alfalfa sprouts and spent irrigation water using PCR. J. Food Prot., 68(11):2256-2263.

[10] Kikuchi, M., Shiratori, S., 2005. Quartz crystal microbalance (QCM) sensor for CH3SH gas by using polyelectrolyte-coated sol-gel film. Sensors and Actuators B Chemical, 108(1-2):564-571.

[11] Liu, Y., Li, Y., 2001. An antibody-immobilized capillary column as a bioseparator/bioreactor for detection of E. coli O157:H7 with absorbance measurement. Anal. Chem., 73(21):5180-5183.

[12] Liu, Y., Ye, J., Li, Y., 2003. Rapid detection of Escherichia coli O157:H7 in ground beef, chicken carcass, and lettuce samples using an immunomagnetic chemiluminescence fiber optic biosensor. J. Food Prot., 66(3):512-517.

[13] Magliulo, M., Simoni, P., Guardigli, M., Michelini, E., Luciani, M., Lelli, R., Roda, A., 2007. A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J. Agric. Food Chem., 55(13):4933-4939.

[14] Mao, X., Yang, L., Su, X.L., Li, Y., 2006. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens. Bioelectron., 21(7):1178-1185.

[15] Martin, S.J., Granstaff, V.E., Frye, G.C., 1991. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem., 63(20):2272-2281.

[16] Mirsky, V.M., Riepl, M., Wolfbeis, O.S., 1997. Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron., 12(9-10):977-989.

[17] Morita, S., Nukui, M., Kuboi, R., 2006. Immobilization of liposomes onto quartz crystal microbalance to detect interaction between liposomes and proteins. J. Colloid Interface Sci., 298(2):672-678.

[18] Nishimura, S., Yoshidome, T., Tokuda, T., Mitsushio, M., Higo, M., 2002. Application of a surface plasmon resonance sensor to analyses of amine compounds with the use of a polymer film and an acid-base reaction. Anal. Sci., 18(3):261-265.

[19] Qian, X., Metallo, S.J., Choi, L.S., Wu, H., Liang, M.N., Whitesides, G.M., 2002. Arrays of self-assembled monolayers for studying inhibition of bacterial adhesion. Anal. Chem., 74(8):1805-1810.

[20] Rangel, J.M., Sparling, P.H., Crowe, C., Griffin, P.M., Swerdlow, D.L., 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis., 11(4):603-609.

[21] Ruan, C., Yang, L., Li, Y., 2002. Immunosensor chips for detection of E. coli O157:H7 using electrochemical impedance spectroscopy. Anal. Chem., 74(18):4814-4820.

[22] Smith, R.K., Lewis, P.A., Weiss, P.S., 2004. Patterning self-assembled monolayers. Progress in Surface Science, 75(1-2):1-68.

[23] Su, X.L., Li, Y., 2004. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosens. Bioelectron., 19(6):563-574.

[24] Su, X.L., Li, Y., 2005. A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens. Bioelectron., 21(6):840-848.

[25] Tu, S.I., Uknalis, J., Irwin, P., Yu, L.S.L., 2000. The use of strepavidin coated magnetic beads for detecting pathogenic bacteria by light addressable potentionmetric sensor. J. Rapid Meth. Automat. Microbiol., 8(4):96-109.

[26] Tuttle, J., Gomez, T., Doyle, M.P., Wells, J.G., Zhao, T., Tauxe, R.V., Griffin, P.M., 1999. Lessons from a large outbreak of Escherichia coli O157:H7 infections: Insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol. Infect., 122(2):185-192.

[27] Varshney, M., Li, Y., 2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron., 22(11):2408-2414.

[28] Wang, L., Li, Y., Mustaphai, A., 2007. Rapid and simultaneous quantitation of Escherichia coli O157:H7, Salmonella, and Shigella in ground beef by multiplex real-time PCR and immunomagnetic separation. J. Food Prot., 70(6):1366-1372.

[29] Wong, Y.Y., Ng, S.P., Ng, M.H., Si, S.H., Yao, S.Z., Fung, Y.S., 2002. Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosens. Bioelectron., 17(8):676-684.

[30] Zhang, X., Chen, H., Zhang, H., 2007. Layer-by-layer assembly: From conventional to unconventional methods. Chem. Commun., 14(14):1395-1405.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE