Full Text:   <3278>

CLC number: R37

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2008-12-17

Cited: 14

Clicked: 5415

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2009 Vol.10 No.1 P.67-76

http://doi.org/10.1631/jzus.B0820256


Mycoplasma lipoproteins and Toll-like receptors


Author(s):  Ling-ling ZUO, Yi-mou WU, Xiao-xing YOU

Affiliation(s):  Institute of Pathogenic Biology, School of Medicine, University of South China, Hengyang 421001, China

Corresponding email(s):   yimouwu@sina.com

Key Words:  Mycoplasma lipoproteins/lipopeptides, Toll-like receptors, Signal pathway, Mycoplasmal pathogenic mechanism


Ling-ling ZUO, Yi-mou WU, Xiao-xing YOU. Mycoplasma lipoproteins and Toll-like receptors[J]. Journal of Zhejiang University Science B, 2009, 10(1): 67-76.

@article{title="Mycoplasma lipoproteins and Toll-like receptors",
author="Ling-ling ZUO, Yi-mou WU, Xiao-xing YOU",
journal="Journal of Zhejiang University Science B",
volume="10",
number="1",
pages="67-76",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820256"
}

%0 Journal Article
%T Mycoplasma lipoproteins and Toll-like receptors
%A Ling-ling ZUO
%A Yi-mou WU
%A Xiao-xing YOU
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 1
%P 67-76
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820256

TY - JOUR
T1 - Mycoplasma lipoproteins and Toll-like receptors
A1 - Ling-ling ZUO
A1 - Yi-mou WU
A1 - Xiao-xing YOU
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 1
SP - 67
EP - 76
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820256


Abstract: 
Mycoplasmas, the smallest free-living, self-replicating bacteria with diameters of 200 to 800 nm, have been reported to be associated with human diseases. It is well known that the mycoplasma lipoprotein/peptide is able to modulate the host immune system, whose N-terminal structure is an important factor in inducing immunity and distinguishing toll-like receptors (TLRs). However, there is still no clear elucidation about the pathogenic mechanism of mycoplasma lipoprotein/peptide and the signaling pathway. Some researchers have focused on understanding the structures of these proteins and the relationships between their structure and biological function. This review provides an update on the research in this field.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Akira, S., Takeda, K., Kaisho, T., 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol., 2(8):675-680.

[2] Aliprantis, A.O., Yang, R.B., Mark, M.R., Suggett, S., Devaux, B., Radolf, J.D., Klimpel, G.R., Godowski, P., Zychlinsky, A., 1999. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science, 285(5428):736-739.

[3] Anders, H.J., Banas, B., Schlondorff, D., 2004. Signaling danger: Toll-like receptors and their potential roles in kidney disease. J. Am. Soc. Nephrol., 15(4):854-867.

[4] Anderson, K.V., 2000. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol., 12(1):13-19.

[5] Baseman, J.B., Tully, J.G., 1997. Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg. Infect Dis., 3(1):21-32.

[6] Bell, J.K., Botos, I., Hall, P.R., Askins, J., Shiloach, J., Segal, D.M., Davies, D.R., 2005. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA, 102(31):10976-10980.

[7] Brightbill, H.D., Libraty, D.H., Krutzik, S.R., Yang, R.B., Belisle, J.T., Bleharski, J.R., Maitland, M., Norgard, M.V., Plevy, S.E., Smale, S.T., et al., 1999. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science, 285(5428):732-736.

[8] Buwitt-Beckmann, U., Heine, H., Wiesmüller, K.H., Jung, G., Brock, R., Akira, S., Ulmer, A.J., 2006. TLR1- and TLR6-independent recognition of bacterial lipopeptides. J. Biol. Chem., 281(14):9049-9057.

[9] Chambaud, I., Wróblewski, H., Blanchard, A., 1999. Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol., 7(12):493-499.

[10] Chen, Z.J., 2005. Ubiquitin signalling in the NF-kappaB pathway. Nat. Cell Biol., 7(8):758-765.

[11] Cook, D.N., Pisetsky, D.S., Schwartz, D.A., 2004. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol., 5(10):975-979.

[12] Feng, S.H., Lo, S.C., 1994. Induced mouse spleen B-cell proliferation and secretion of immunoglobulin by lipid-associated membrane proteins of Mycoplasma fermentans incognitus and Mycoplasma penetrans. Infect. Immun., 62(9):3916-3921.

[13] Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann, R.D., Bult, C.J., Kerlavage, A.R., Sutton, G., Kelley, J.M., et al., 1995. The minimal gene complement of Mycoplasma genitalium. Science, 270(5235):397-403.

[14] Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R., White, O., Ketchum, K.A., Dodson, R., Hickey, E.K., et al., 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature, 390(6660):580-586.

[15] Fujita, M., Into, T., Yasuda, M., Okusawa, T., Hamahira, S., Kuroki, Y., Eto, A., Nisizawa, T., Morita, M., Shibata, K., 2003. Involvement of leucine residues at positions 107, 112, and 115 in a leucine-rich repeat motif of human Toll-like receptor 2 in the recognition of diacylated lipoproteins and lipopeptides and Staphylococcus aureus peptidoglycans. J. Immunol., 171(7):3675-3683.

[16] Funami, K., Matsumoto, M., Oshiumi, H., Akazawa, T., Yamamoto, A., Seya, T., 2004. The cytoplasmic ‘linker region’ in Toll-like receptor 3 controls receptor localization and signaling. Int. Immunol., 16(8):1143-1154.

[17] Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S., Underhill, D.M., 2003. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med., 197(9):1107-1117.

[18] Gay, N.J., Gangloff, M., 2007. Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem., 76(1): 141-165.

[19] Gay, N.J., Gangloff, M., 2008. Structure of Toll-like Receptors. In: Handbook of Experimental Pharmacology. Springer Berlin Heidelberg, Vol. 183, p.181-200.

[20] Gerlic, M., Horowitz, J., Farkash, S., Horowitz, S., 2007. The inhibitory effect of Mycoplasma fermentans on tumor necrosis factor (TNF)-alpha-induced apoptosis resides in the membrane lipoproteins. Cell. Microbiol., 9(1): 142-153.

[21] Grabiec, A., Meng, G., Fichte, S., Bessler, W., Wagner, H., Kirschning, C.J., 2004. Human but not murine Toll-like receptor 2 discriminates between tri-palmitoylated and tri-lauroylated peptides. J. Biol. Chem., 279(46):48004-48012.

[22] Gringhuis, S.I., den Dunnen, J., Litjens, M., van Het Hof, B., van Kooyk, Y., Geijtenbeek, T.B., 2007. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity, 26(5):605-616.

[23] Hasan, U., Chaffois, C., Gaillard, C., Saulnier, V., Merck, E., Tancredi, S., Guiet, C., Brière, F., Vlach, J., Lebecque, S., et al., 2005. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J. Immunol., 174(5):2942-2950.

[24] Hasebe, A., Mu, H.H., Washburn, L.R., Chan, F.V., Pennock, N.D., Taylor, M.L., Cole, B.C., 2007. Inflammatory lipoproteins purified from a toxigenic and arthritogenic strain of Mycoplasma arthritidis are dependent on Toll-like receptor 2 and CD14. Infect. Immun., 75(4): 1820-1826.

[25] Heil, F., Ahmad-Nejad, P., Hemmi, H., Hochrein, H., Ampenberger, F., Gellert, T., Dietrich, H., Lipford, G., Takeda, K., Akira, S., et al., 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol., 33(11):2987-2997.

[26] Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., Bauer, S., 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science, 303(5663): 1526-1529.

[27] Henderson, B., Poole, S., Wilson, M., 1996. Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev., 60(2):316-341.

[28] Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B.C., Herrmann, R., 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic. Acids Res., 24(22):4420-4449.

[29] Hoebe, K., Georgel, P., Rutschmann, S., Du, X., Mudd, S., Crozat, K., Sovath, S., Shamel, L., Hartung, T., Zähringer, U., et al., 2005. CD36 is a sensor of diacylglycerides. Nature, 433(7025):523-527.

[30] Huizinga, E.G., Tsuji, S., Romijn, R.A.P., Schiphorst, M.E., de Groot, P.G., Sixma, J.J., Gros, P., 2002. Structures of glycoprotein Ib alpha and its complex with von Willebrand factor A1 domain. Science, 297(5584):1176-1179.

[31] Into, T., Shibata, K., 2005. Apoptosis signal-regulating kinase 1-mediated sustained p38 mitogen-activated protein kinase activation regulates mycoplasmal lipoprotein- and staphylococcal peptidoglycan-triggered Toll-like receptor 2 signalling pathways. Cell. Microbiol., 7(9):1305-1317.

[32] Into, T., Kiura, K., Yasuda, M., Kataoka, H., Inoue, N., Hasebe, A., Takeda, K., Akira, S., Shibata, K., 2004. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappaB activation. Cell. Microbiol., 6(2):187-199.

[33] Jan, G., Fontenelle, C., Le Hénaff, M., Wróblewski, H., 1995. Acylation and immunological properties of Mycoplasma gallisepticum membrane proteins. Res. Microbiol., 146(9): 739-750.

[34] Jan, G., Brenner, C., Wróblewski, H., 1996. Purification of Mycoplasma gallisepticum membrane proteins p52, p67 (pMGA), and p77 by high-performance liquid chromatography. Protein Expr. Purif., 7(2):160-166.

[35] Jin, M.S., Kim, S.E., Heo, J.Y., Lee, M.E., Kim, H.M., Paik, S.G., Lee, H., Lee, J.O., 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 130(6):1071-1082.

[36] Kawai, T., Akira, S., 2005. Toll-like receptor downstream signaling. Arthritis. Res. Ther., 7(1):12-19.

[37] Kawai, T., Akira, S., 2007. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med., 13(11):460-469.

[38] Kim, H.M., Park, B.S., Kim, J.I., Kim, S.E., Lee, J., Oh, S.C., Enkhbayar, P., Matsushima, N., Lee, H., Yoo, O.J., et al., 2007. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell, 130(5): 906-917.

[39] Latz, E., Schoenemeyer, A., Visintin, A., Fitzgerald, K.A., Monks, B.G., Knetter, C.F., Lien, E., Nilsen, N.J., Espevik, T., Golenbock, D.T., 2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol., 5(2):190-198.

[40] Leifer, C.A., Kennedy, M.N., Mazzoni, A., Lee, C., Kruhlak, M.J., Segal, D.M., 2004. TLR9 is localized in the endoplasmic reticulum prior to stimulation. J. Immunol., 173(2):1179-1183.

[41] Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., Hoffmann, J.A., 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86(6):973-983.

[42] Liu, P.T., Krutzik, S.R., Modlin, R.L., 2007. Therapeutic implications of the TLR and VDR partnership. Trends Mol. Med., 13(3):117-124.

[43] Matsumoto, M., Takeda, J., Inoue, N., Hara, T., Hatanaka, M., Takahashi, K., Nagasawa, S., Akedo, H., Seya, T., 1997. A novel protein that participates in nonself discrimination of malignant cells by homologous complement. Nat. Med., 3:1266-1270.

[44] Matsumoto, M., Funami, K., Tanabe, M., Oshiumi, H., Shingai, M., Seto, Y., Yamamoto, A., Seya, T., 2003. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol., 171(6):3154-3162.

[45] Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., Janeway, C.A.J., 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell, 2(2):253-258.

[46] Mitsunari, M., Yoshida, S., Shoji, T., Tsukihara, S., Iwabe, T., Harada, T., Terakawa, N., 2006. Macrophage-activating lipopeptide-2 induces cyclooxygenase-2 and prostaglandin E(2) via Toll-like receptor 2 in human placental trophoblast cells. J. Reprod. Immunol., 72(1-2):46-59.

[47] Mühlradt, P.F., Schade, U., 1991. MDHM, a macrophage-stimulatory product of Mycoplasma fermentans, leads to in vitro interleukin-1 (IL-1), IL-6, tumor necrosis factor, and prostaglandin production and is pyrogenic in rabbits. Infect. Immun., 59(11):3969-3974.

[48] Mühlradt, P.F., Meyer, H., Jansen, R., 1996. Identification of S-(2,3-dihydroxypropyl) cystein in a macrophage-activating lipopeptide from Mycoplasma fermentans. Biochemistry, 35(24):7781-7786.

[49] Mühlradt, P.F., Kiess, M., Meyer, H., Süssmuth, R., Jung, G., 1997. Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J. Exp. Med., 185(11):1951-1958.

[50] Mühlradt, P.F., Kiess, M., Meyer, H., Süssmuth, R., Jung, G., 1998. Structure and specific activity of macrophage-stimulating lipopeptides from Mycoplasma hyorhinis. Infect Immun., 66(10):4804-4810.

[51] Muzio, M., Natoli, G., Saccani, S., Levrero, M., Mantovani, A., 1998. The human Toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med., 187(12):2097-2101.

[52] Nishitani, C., Mitsuzawa, H., Sano, H., Shimizu, T., Matsushima, N., Kuroki, Y., 2006. Toll-like receptor 4 region Glu24-Lys47 is a site for MD-2 binding: importance of CYS29 and CYS40. J. Biol. Chem., 281(50):38322-38329.

[53] Okusawa, T., Fujita, M., Nakamura, J., Into, T., Yasuda, M., Yoshimura, A., Hara, Y., Hasebe, A., Golenbock, D.T., Morita, M., et al., 2004. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by Toll-like receptors 2 and 6. Infect. Immun., 72(3):1657-1665.

[54] Omueti, K.O., Beyer, J.M., Johnson, C.M., Lyle, E.A., Tapping, R.I., 2005. Domain exchange between human Toll-like receptors 1 and 6 reveals a region required for lipopeptide discrimination. J. Biol. Chem., 280(44): 36616-36625.

[55] O′Neill, L.A.J., Fitzgerald, K.A., Bowie, A.G., 2003. The Toll-IL-1 receptor adaptor family grows to five members. Trends in Immunol., 24:287-290.

[56] Shibata, K., Hasebe, A., Into, T., Yamada, M., Watanabe, T., 2000. The N-terminal lipopeptide of a 44-kDa membrane-bound lipoprotein of Mycoplasma salivarium is responsible for the expression of intercellular adhesion molecule-1 on the cell surface of normal human gingival fibroblasts. J. Immunol., 165:6538-6544.

[57] Shimizu, T., Kida, Y., Kuwano, K., 2004. Lipid-associated membrane proteins of Mycoplasma fermentans and M. penetrans activate human immunodeficiency virus long-terminal repeats through Toll-like receptors. Immunology, 113(1):121-129.

[58] Shimizu, T., Kida, Y., Kuwano, K., 2005. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappaB through TLR1, TLR2, and TLR6. J. Immunol., 175(7):4641-4646.

[59] Shimizu, T., Kida, Y., Kuwano, K., 2007. Triacylated lipoproteins derived from Mycoplasma pneumoniae activate nuclear factor-kappaB through Toll-like receptors 1 and 2. Immunology, 121(4):473-483.

[60] Shimizu, T., Kida, Y., Kuwano, K., 2008a. Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infect. Immun., 76(1):270-277.

[61] Shimizu, T., Kida, Y., Kuwano, K., 2008b. Ureaplasma parvum lipoproteins, including MB antigen, activate NF-κB through TLR1, TLR2 and TLR6. Microbiology, 154(5): 1318-1325.

[62] Takeda, K., Kaisho, T., Akira, S., 2003. Toll-like receptors. Annu. Rev. Immunol., 21(1):335-376.

[63] Takeuchi, O., Kaufmann, A., Grote, K., Kawai, T., Hoshino, K., Morr, M., Mühlradt, P.F., Akira, S., 2000. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol., 164(2):554-557.

[64] Takeuchi, O., Kawai, T., Mühlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K., Akira, S., 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol., 13(7):933-940.

[65] Tosatto, S.C., 2005. The victor/FRST function for model quality estimation. J. Comput. Biol., 12(10):1316-1327.

[66] Triantafilou, M., Gamper, F.G., Haston, R.M., Mouratis, M.A., Morath, S., Hartung, T., Triantafilou, K., 2006. Membrane sorting of Toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J. Biol. Chem., 281(41):31002-31011.

[67] Underhill, D.M., Ozinsky, A., Hajjar, A.M., Stevens, A., Wilson, C.B., Bassetti, M., Aderem, A., 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 401(6755): 811-815.

[68] Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., Chen, Z.J., 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 412(6844):346-351.

[69] Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S., Cao, Z., 1997. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity, 7(6):837-847.

[70] West, A.P., Koblansky, A.A., Ghosh, S., 2006. Recognition and signaling by Toll-like receptors. Annu. Rev. Cell Dev. Biol., 22(1):409-437.

[71] Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., et al., 2003. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science, 301(5633):640-643.

[72] You, X.X., Zeng, Y.H., Wu, Y.M., 2006. Interactions between mycoplasma lipid-associated membrane proteins and the host cells. J. Zhejiang Univ. Sci. B, 7(5):342-350.

[73] Zhang, D., Zhang, G., Hayden, M.S., Greenblatt, M.B., Bussey, C., Flavell, R.A., Ghosh, S., 2004. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science, 303(5663):1522-1526.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE