Full Text:   <1692>

Summary:  <1197>

CLC number: 

On-line Access: 2021-08-20

Received: 2020-12-22

Revision Accepted: 2021-04-09

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2789

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Huashan YI

https://orcid.org/0000-0001-9205-2155

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2021 Vol.22 No.8 P.609-632

http://doi.org/10.1631/jzus.B2000808


Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses


Author(s):  Yujuan CHEN, Junhong LIN, Yao ZHAO, Xianping MA, Huashan YI

Affiliation(s):  College of Veterinary Medicine, Southwest University, Chongqing 402460, China; more

Corresponding email(s):   dyxyihuashan@swu.edu.cn

Key Words:  Toll-like receptor 3 (TLR3), Toll-interleukin-1 receptor (TIR)‍, -domain-containing adaptor-inducing interferon-‍, β, (TRIF), Innate immune, Antiviral response


Share this article to: More |Next Article >>>

Yujuan CHEN, Junhong LIN, Yao ZHAO, Xianping MA, Huashan YI. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses[J]. Journal of Zhejiang University Science B, 2021, 22(8): 609-632.

@article{title="Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses",
author="Yujuan CHEN, Junhong LIN, Yao ZHAO, Xianping MA, Huashan YI",
journal="Journal of Zhejiang University Science B",
volume="22",
number="8",
pages="609-632",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000808"
}

%0 Journal Article
%T Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses
%A Yujuan CHEN
%A Junhong LIN
%A Yao ZHAO
%A Xianping MA
%A Huashan YI
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 8
%P 609-632
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000808

TY - JOUR
T1 - Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses
A1 - Yujuan CHEN
A1 - Junhong LIN
A1 - Yao ZHAO
A1 - Xianping MA
A1 - Huashan YI
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 8
SP - 609
EP - 632
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000808


Abstract: 
toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response. Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the toll-interleukin-1 receptor (TIR)‍;-domain-containing adaptor-inducing IFN-‍β;(TRIF). However, the details of how the TLR3-TRIF signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of novel treatments for viral diseases.

Toll样受体3(TLR3)调控机制及其抗病毒先天免疫效应

摘要:Toll样受体3(TLR3)是TLR家族的成员,介导I型干扰素、促炎细胞因子和趋化因子的转录诱导,从而共同建立宿主的抗病毒反应。研究表明,不同于其他TLR家族成员,TLR3是唯一一个完全依赖于β干扰素TIR结构域衔接蛋白(TRIF)的核糖核酸传感器。然而,TLR3-TRIF信号通路如何在抗病毒反应中起作用以及如何被调控尚不完全清楚。在这篇综述中,我们重点介绍了TRIF信号通路抗病毒机制的最新研究进展,并描述了TLR3的基本特征及其抗病毒作用。进一步了解TLR3有助于相关疾病治疗,并促进某些病毒性疾病新疗法的建立。

关键词:Toll样受体3(TLR3);β干扰素TIR结构域衔接蛋白(TRIF);先天免疫;抗病毒反应

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbstonED, CoronadoMJ, BucekA, et al., 2013. TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4. Am J Phys Regul Integr Comp Phys, 304(4):R267-R277.

[2]AgierJ, ŻelechowskaP, KozłowskaE, et al., 2016. Expression of surface and intracellular Toll-like receptors by mature mast cells. Cent Eur J Immunol, 41(4):333-338.

[3]AlexopoulouL, HoltAC, MedzhitovR, et al., 2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature, 413(6857):732-738.

[4]Alvarez-CarbonellD, Garcia-MesaY, MilneS, et al., 2017. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology, 14:9.

[5]AmeyarM, WisniewskaM, WeitzmanJB, 2003. A role for AP-1 in apoptosis: the case for and against. Biochimie, 85(8):747-752.

[6]AnBY, XieQ, LinLY, et al., 2007. Expression of Toll-like receptor 3 on peripheral blood dendritic cells in HBeAg positive patients with chronic hepatitis B. Chin J Hepatol, 15(10):729-733 (in Chinese).

[7]AntoszH, ChoroszyńskaD, 2013. Negative regulation of Toll-like receptor signalling. Postepy Hig Med Dosw, 67:339-350.

[8]AssarS, ArababadiMK, AhmadabadiBN, et al., 2012. Occult hepatitis B virus (HBV) infection: a global challenge for medicine. Clin Lab, 58(11-12):1225-1230.

[9]BaratchianM, DavisCA, ShimizuA, et al., 2016. Distinct activation mechanisms of NF-‍κB regulator inhibitor of NF-κB kinase (IKK) by isoforms of the cell death regulator cellular FLICE-like inhibitory protein (cFLIP). J Biol Chem, 291(14):7608-7620.

[10]BartonGM, KaganJC, 2009. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol, 9(8):535-542.

[11]BhargavanB, WoollardSM, KanmogneGD, 2016. Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication. Cell Signal, 28(2):7-22.

[12]BlasiusAL, BeutlerB, 2010. Intracellular Toll-like receptors. Immunity, 32(3):305-315.

[13]BooneDL, TurerEE, LeeEG, et al., 2004. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol, 5(10):‍1052-1060.

[14]BotosI, LiuL, WangY, et al., 2009. The Toll-like receptor 3: dsRNA signaling complex. Biochim Biophys Acta Gene Regul Mech, 1789(9-10):667-674.

[15]BreckpotK, EscorsD, ArceF, et al., 2010. HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol, 84(11):5627-5636.

[16]BuggeM, BergstromB, EideOK, et al., 2017. Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem, 292(37):‍15408-15425.

[17]CaoLL, LiuSD, LiYF, et al., 2019. The nuclear matrix protein SAFA surveils viral RNA and facilitates immunity by activating antiviral enhancers and super-enhancers. Cell Host Microbe, 26(3):369-384.e8.

[18]CaoY, SunY, ChangHY, et al., 2019. The E3 ubiquitin ligase RNF182 inhibits TLR-triggered cytokine production through promoting p65 ubiquitination and degradation. FEBS Lett, 593(22):3210-3219.

[19]CartwrightT, PerkinsND, WilsonCL, 2016. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J, 283(10):1812-1822.

[20]CartyM, BowieAG, 2019. SARM: from immune regulator to cell executioner. Biochem Pharmacol, 161:52-62.

[21]ChenCY, ShihYC, HungYF, et al., 2019. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci, 26:90.

[22]ChenHW, YangYK, XuH, et al., 2015. Ring finger protein 166 potentiates RNA virus-induced interferon-β production via enhancing the ubiquitination of TRAF3 and TRAF6. Sci Rep, 5:14770.

[23]ChengL, WangQ, LiGM, et al., 2018. TLR3 agonist and CD40-targeting vaccination induces immune responses and reduces HIV-1 reservoirs. J Clin Invest, 128(10):4387-4396.

[24]ChoeJ, KelkerMS, WilsonIA, 2005. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science, 309(5734):581-585.

[25]CorcoranSE, O'NeillLAJ, 2016. HIF1α and metabolic reprogramming in inflammation. J Clin Invest, 126(10):3699-3707.

[26]CorstenMF, SchroenB, HeymansS, 2012. Inflammation in viral myocarditis: friend or foe? Trends Mol Med, 18(7):426-437.

[27]CuiJ, LiYY, ZhuL, et al., 2012. NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol, 13(4):387-395.

[28]DaffisS, SamuelMA, SutharMS, et al., 2008. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol, 82(21):10349-10358.

[29]DiehlGE, YueHH, HsiehK, et al., 2004. TRAIL-R as a negative regulator of innate immune cell responses. Immunity, 21(6):877-889.

[30]DongR, ChuZG, YuFX, et al., 2020. Contriving multi-epitope subunit of vaccine for COVID-19: immunoinformatics approaches. Front Immunol, 11:1784.

[31]DoyleM, JantschMF, 2002. New and old roles of the double-stranded RNA-binding domain. J Struct Biol, 140(1-3):147-153.

[32]EmmerichCH, OrdureauA, StricksonS, et al., 2013. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci USA, 110(38):15247-15252.

[33]ErmolaevaMA, MichalletMC, PapadopoulouN, et al., 2008. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol, 9(9):1037-1046.

[34]EsfandiareiM, McManusBM, 2008. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol Mech Dis, 3:127-155.

[35]EspositoS, MolteniCG, GilianiS, et al., 2012. Toll-like receptor 3 gene polymorphisms and severity of pandemic A/H1N1/2009 influenza in otherwise healthy children. Virol J, 9:270.

[36]EwaldSE, EngelA, LeeJ, et al., 2011. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med, 208(4):643-651.

[37]FangF, OokaK, SunXY, et al., 2013. A synthetic TLR3 ligand mitigates profibrotic fibroblast responses by inducing autocrine IFN signaling. J Immunol, 191(6):2956-2966.

[38]FischerJ, KoukouliotiE, SchottE, et al., 2018. Polymorphisms in the Toll-like receptor 3 (TLR3) gene are associated with the natural course of hepatitis B virus infection in caucasian population. Sci Rep, 8:12737.

[39]FitzgeraldKA, KaganJC, 2020. Toll-like receptors and the control of immunity. Cell, 180(6):1044-1066.

[40]FreedmanNJ, ShenoySK, 2018. Regulation of inflammation by β-arrestins: not just receptor tales. Cell Signal, 41:41-45.

[41]FrobøseH, RønnSG, HedingPE, et al., 2006. Suppressor of cytokine signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex. Mol Endocrinol, 20(7):1587-1596.

[42]FunamiK, MatsumotoM, OshiumiH, et al., 2004. The cytoplasmic ‘linker region’ in Toll-like receptor 3 controls receptor localization and signaling. Int Immunol, 16(8):1143-1154.

[43]FunamiK, SasaiM, OhbaY, et al., 2007. Spatiotemporal mobilization of Toll/IL-1 receptor domain-containing adaptor molecule-1 in response to dsRNA. J Immunol, 179(10):6867-6872.

[44]FunamiK, SasaiM, OshiumiH, et al., 2008. Homo-oligomerization is essential for Toll/interleukin-1 receptor domain-containing adaptor molecule-1-mediated NF-κB and interferon regulatory factor-3 activation. J Biol Chem, 283(26):18283-18291.

[45]FunamiK, MatsumotoM, ObuseC, et al., 2016. 14-3-3-ζ participates in TLR3-mediated TICAM-1 signal-platform formation. Mol Immunol, 73:60-68.

[46]GalluzziL, GreenDR, 2019. Autophagy-independent functions of the autophagy machinery. Cell, 177(7):‍1682-1699.

[47]GaoD, WangXD, JinGY, et al., 2015. Research progress of Toll-like receptor and ligand complex structure. China J Cell Mol Immunol, 31(4):553-556 (in Chinese).

[48]GaoJJ, TianZX, YangX, 2020. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends, 14(1):72-73.

[49]GengPL, SongLX, AnHJ, et al., 2016. Toll-like receptor 3 is associated with the risk of HCV infection and HBV-related diseases. Medicine (Baltimore), 95(21):e2302.

[50]GongT, LiuL, JiangW, et al., 2020. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol, 20(2):95-112.

[51]GosuV, SonS, ShinD, et al., 2019. Insights into the dynamic nature of the dsRNA-bound TLR3 complex. Sci Rep, 9:3652.

[52]GowenBB, HoopesJD, WongMH, et al., 2006. TLR3 deletion limits mortality and disease severity due to phlebovirus infection. J Immunol, 177(9):6301-6307.

[53]GuanWJ, NiZY, HuY, et al., 2020. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 382(18):1708-1720.

[54]GuoBC, ChengGH, 2007. Modulation of the interferon antiviral response by the TBK1/IKKI adaptor protein TANK. J Biol Chem, 282(16):11817-11826.

[55]HanCF, JinJ, XuS, et al., 2010. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol, 11(8):734-742.

[56]HardarsonHS, BakerJS, YangZ, et al., 2007. Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. Am J Physiol Heart Circ Physiol, 292(1):H251-H258.

[57]HaseK, ContuVR, KabutaC, et al., 2020. Cytosolic domain of SIDT2 carries an arginine-rich motif that binds to RNA/DNA and is important for the direct transport of nucleic acids into lysosomes. Autophagy, 16(11):‍1974-1988.

[58]HeX, LiY, LiC, et al., 2013. USP2a negatively regulates IL-1β‍- and virus-induced NF-κB activation by deubiquitinating TRAF6. J Mol Cell Biol, 5(1):39-47.

[59]HidakaF, MatsuoS, MutaT, et al., 2006. A missense mutation of the Toll-like receptor 3 gene in a patient with influenza-associated encephalopathy. Clin Immunol, 119(2):188-194.

[60]HondaK, TakaokaA, TaniguchiT, 2006. Type I inteferon gene induction by the interferon regulatory factor family of transcription factors. Immunity, 25(3):349-360.

[61]HuYH, ZhangY, JiangLQ, et al., 2015. WDFY1 mediates TLR3/4 signaling by recruiting TRIF. EMBO Rep, 16(4):447-455.

[62]HuhHD, LeeE, ShinJ, et al., 2017. STRAP positively regulates TLR3-triggered signaling pathway. Cell Immunol, 318:55-60.

[63]HuoCY, JinY, ZouSM, et al., 2018. Lethal influenza A virus preferentially activates TLR3 and triggers a severe inflammatory response. Virus Res, 257:102-112.

[64]IsmailS, AhmadS, AzamSS, 2020. Immunoinformatics characterization of SARS-CoV-2 spike glycoprotein for prioritization of epitope based multivalent peptide vaccine. J Mol Liq, 314:113612.

[65]ItohK, WatanabeA, FunamiK, et al., 2008. The clathrin-mediated endocytic pathway participates in dsRNA-induced IFN-β production. J Immunol, 181(8):‍5522-5529.

[66]JiangY, YeL, CuiY, et al., 2017. Effects of Lactobacillus rhamnosus GG on the maturation and differentiation of dendritic cells in rotavirus-infected mice. Benef Microbes, 8(4):645-656.

[67]JohnsenIB, NguyenTT, RingdalM, et al., 2006. Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling. EMBO J, 25(14):3335-3346.

[68]KangJY, LeeJO, 2011. Structural biology of the Toll-like receptor family. Annu Rev Biochem, 80:917-941.

[69]KarikóK, BhuyanP, CapodiciJ, et al., 2004. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through Toll-like receptor 3. J Immunol, 172(11):6545-6549.

[70]KarikóK, BucksteinM, NiH, et al., 2005. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 23(2):165-175.

[71]Karimi-GoogheriM, ArababadiMK, 2014. TLR3 plays significant roles against hepatitis B virus. Mol Biol Rep, 41(5):3279-3286.

[72]KawaiT, AkiraS, 2007. Signaling to NF-κB by Toll-like receptors. Trends Mol Med, 13(11):460-469.

[73]KawaiT, AkiraS, 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 11(5):373-384.

[74]KawasakiT, KawaiT, 2014. Toll-like receptor signaling pathways. Front Immunol, 5:461.

[75]KayagakiN, PhungQ, ChanS, et al., 2007. A deubiquitinase that regulates type I interferon production. Science, 318(5856):1628-1632.

[76]KindbergE, VeneS, MickieneA, et al., 2011. A functional Toll-like receptor 3 gene (TLR3) may be a risk factor for tick-borne encephalitis virus (TBEV) infection. J Infect Dis, 203(4):523-528.

[77]KleinmanME, YamadaK, TakedaA, et al., 2008. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 452(7187):591-597.

[78]KohlB, GranitzkaV, SinghA, et al., 2019. Comparison of backbone dynamics of the p50 dimerization domain of NFκB in the homodimeric transcription factor NFκB1 and in its heterodimeric complex with RelA (p65). Protein Sci, 28(12):2064-2072.

[79]KongKF, DelrouxK, WangXM, et al., 2008. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol, 82(15):7613-7623.

[80]KramerLD, StyerLM, EbelGD, 2008. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol, 53:61-81.

[81]KulkaM, AlexopoulouL, FlavellRA, et al., 2004. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol, 114(1):174-182.

[82]KumetaH, SakakibaraH, EnokizonoY, et al., 2014. The N-terminal domain of TIR domain-containing adaptor molecule-1, TICAM-1. J Biomol NMR, 58(3):227-230.

[83]LafailleFG, PessachIM, ZhangSY, et al., 2012. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature, 491(7426):769-773.

[84]LangstonPK, NambuA, JungJ, et al., 2019. Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses. Nat Immunol, 20(9):1186-1195.

[85]LaporteSA, ScottMGH, 2019. β‍-Arrestins: multitask scaffolds orchestrating the where and when in cell signalling. In: Scott MGH, Laporte SA (Eds.), Beta-Arrestins. Humana Press, New York, p.9-55.

[86]LeeHK, DunzendorferS, SoldauK, et al., 2006. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity, 24(2):153-163.

[87]LeeKG, XuSL, KangZH, et al., 2012. Bruton’s tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci USA, 109(15):5791-5796.

[88]LeiCQ, WuX, ZhongX, et al., 2019. USP19 inhibits TNF-α- and IL-1β-triggered NF-κB activation by deubiquitinating TAK1. J Immunol, 203(1):259-268.

[89]LeonardJN, GhirlandoR, AskinsJ, et al., 2008. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci USA, 105(1):258-263.

[90]LeungYHC, NichollsJM, HoCK, et al., 2014. Highly pathogenic avian influenza A H5N1 and pandemic H1N1 virus infections have different phenotypes in Toll-like receptor 3 knockout mice. J Gen Virol, 95(Pt 9):1870-1879.

[91]LiFB, LiY, LiangHC, et al., 2018. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest, 128(9):4148-4162.

[92]LiK, LiNL, WeiD, et al., 2012. Activation of chemokine and inflammatory cytokine response in hepatitis C virus-infected hepatocytes depends on Toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology, 55(3):666-675.

[93]LiST, WangLY, BermanM, et al., 2011. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity, 35(3):426-440.

[94]LiWW, NieY, YangY, et al., 2020. Ubiquitination of TLR3 by TRIM3 signals its ESCRT-mediated trafficking to the endolysosomes for innate antiviral response. Proc Natl Acad Sci USA, 117(38):23707-23716.

[95]LimmonGV, ArredouaniM, McCannKL, et al., 2008. Scavenger receptor class-A is a novel cell surface receptor for double-stranded RNA. FASEB J, 22(1):159-167.

[96]LiuGK, 2019. The Effect of Ubiquitin Ligase Nedd4l on Toll-like Receptor Signaling Transduction of Macrophage. PhD Dissemination, the Second Military Medical University, Shanghai, China(in Chinese).

[97]LiuGQ, GackMU, 2020. Distinct and orchestrated functions of RNA sensors in innate immunity. Immunity, 53(1):26-42.

[98]LiuGQ, LuY, Thulasi RamanSN, et al., 2018. Nuclear-resident RIG-I senses viral replication inducing antiviral immunity. Nat Commun, 9:3199.

[99]LiuL, BotosI, WangY, et al., 2008. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science, 320(5874):379-381.

[100]LiuSQ, CaiX, WuJX, et al., 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 347(6227):aaa2630.

[101]LooYM, GaleM, 2011. Immune signaling by RIG-I-like receptors. Immunity, 34(5):680-692.

[102]LuD, SongJ, SunYZ, et al., 2018. Mutations of deubiquitinase OTUD1 are associated with autoimmune disorders. J Autoimmun, 94:156-165.

[103]LuoJQ, ObmolovaG, MaliaTJ, et al., 2012. Lateral clustering of TLR3: dsRNA signaling units revealed by TLR3ecd:3fabs quaternary structure. J Mol Biol, 421(1):112-124.

[104]LuoL, CursonJEB, LiuLP, et al., 2020. SCIMP is a universal Toll-like receptor adaptor in macrophages. J Leukoc Biol, 107(2):251-262.

[105]MahitaJ, SowdhaminiR, 2017. Integrative modelling of TIR domain-containing adaptor molecule inducing interferon-‍β(TRIF) provides insights into its autoinhibited state. Biol Direct, 12:9.

[106]MahitaJ, SowdhaminiR, 2018. Investigating the effect of key mutations on the conformational dynamics of Toll-like receptor dimers through molecular dynamics simulations and protein structure networks. Proteins, 86(4):475-490.

[107]MaireM, ParentR, MorandAL, et al., 2008. Characterization of the double-stranded RNA responses in human liver progenitor cells. Biochem Biophys Res Commun, 368(3):556-562.

[108]MarshallJS, Portales-CervantesL, LeongE, 2019. Mast cell responses to viruses and pathogen products. Int J Mol Sci, 20(17):4241.

[109]Martin-GayoE, YuXG, 2017. Dendritic cell immune responses in HIV-1 controllers. Curr HIV/AIDS Rep, 14(1):1-7.

[110]MatsumotoM, FunamiK, TanabeM, et al., 2003. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol, 171(6):3154-3162.

[111]MatsumotoM, OshiumiH, SeyaT, 2011. Antiviral responses induced by the TLR3 pathway. Rev Med Virol, 21(2):67-77.

[112]MatsumotoM, TakedaY, SeyaT, 2020. Targeting Toll-like receptor 3 in dendritic cells for cancer immunotherapy. Expert Opin Biol Ther, 20(8):937-946.

[113]MengD, HuoCY, WangM, et al., 2016. Influenza a viruses replicate productively in mouse mastocytoma cells (P815) and trigger pro-inflammatory cytokine and chemokine production through TLR3 signaling pathway. Front Microbiol, 7:2130.

[114]MeylanE, BurnsK, HofmannK, et al., 2004. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-‍κB activation. Nat Immunol, 5(5):503-507.

[115]MickienėA, PakalnienėJ, NordgrenJ, et al., 2014. Polymorphisms in chemokine receptor 5 and Toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS ONE, 9(9):e106798.

[116]MielcarskaMB, Bossowska-NowickaM, TokaFN, 2018. Functional failure of TLR3 and its signaling components contribute to herpes simplex encephalitis. J Neuroimmunol, 316:65-73.

[117]MineevKS, GoncharukSA, ArsenievAS, 2014. Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: an NMR structural study. FEBS Lett, 588(21):3802-3807.

[118]MitchellS, VargasJ, HoffmannA, 2016. Signaling via the NFκB system. WIREs Syst Biol Med, 8(3):227-241.

[119]MortazE, AdcockIM, AbediniA, et al., 2017. The role of pattern recognition receptors in lung sarcoidosis. Eur J Pharmacol, 808:44-48.

[120]MosaadYM, MetwallySS, FaragRE, et al., 2019. Association between Toll-like receptor 3 (TLR3) rs3775290, TLR7 rs179008, TLR9 rs352140 and chronic HCV. Immunol Invest, 48(3):321-332.

[121]NegishiH, OsawaT, OgamiK, et al., 2008. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc Natl Acad Sci USA, 105(51):20446-20451.

[122]NguyenH, GazyN, VenketaramanV, 2020. A role of intracellular Toll-like receptors (3, 7, and 9) in response to Mycobacterium tuberculosis and co-infection with HIV. Int J Mol Sci, 21(17):6148.

[123]NguyenVP, ChenJ, PetrusMN, et al., 2014. A new domain in the Toll/IL-1R domain-containing adaptor inducing interferon-‍βfactor protein amino terminus is important for tumor necrosis factor-‍αreceptor-associated factor 3 association, protein stabilization and interferon signaling. J Innate Immun, 6(3):377-393.

[124]OndondoBO, BrunhamRC, HarrisonWG, et al., 2009. Frequency and magnitude of Chlamydia trachomatis elementary body- and heat shock protein 60-stimulated interferon γ responses in peripheral blood mononuclear cells and endometrial biopsy samples from women with high exposure to infection. J Infect Dis, 199(12):‍1771-1779.

[125]OshiumiH, MatsumotoM, FunamiK, et al., 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-‍βinduction. Nat Immunol, 4(2):161-167.

[126]OshiumiH, OkamotoM, FujiiK, et al., 2011. The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection. J Immunol, 187(10):5320-5327.

[127]PaboCO, SauerRT, 1984. Protein-DNA recognition. Annu Rev Biochem, 53:293-321.

[128]ParkGB, HurDY, KimYS, et al., 2015. TLR3/TRIF signalling pathway regulates IL-32 and IFN-‍βsecretion through activation of RIP-1 and TRAF in the human cornea. J Cell Mol Med, 19(5):1042-1054.

[129]PatelS, SinigagliaA, BarzonL, et al., 2019. Role of NS1 and TLR3 in pathogenesis and immunity of WNV. Viruses, 11(7):603.

[130]PatraMC, BatoolM, HaseebM, et al., 2020. A computational probe into the structure and dynamics of the full-length Toll-like receptor 3 in a phospholipid bilayer. Int J Mol Sci, 21(8):2857.

[131]PeisleyA, HurS, 2013. Multi-level regulation of cellular recognition of viral dsRNA. Cell Mol Life Sci, 70(11):1949-1963.

[132]PelkaK, BerthelootD, ReimerE, et al., 2018. The chaperone UNC93B1 regulates Toll-like receptor stability independently of endosomal TLR transport. Immunity, 48(5):911-922.e7.

[133]PengJ, YuanQ, LinB, et al., 2010. SARM inhibits both TRIF- and MyD88-mediated AP-1 activation. Eur J Immunol, 40(6):1738-1747.

[134]Perales-LinaresR, Navas-MartinS, 2013. Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology, 140(2):153-167.

[135]PiliponskyAM, RomaniL, 2018. The contribution of mast cells to bacterial and fungal infection immunity. Immunol Rev, 282(1):188-197.

[136]PottJ, StockingerS, TorowN, et al., 2012. Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. PLoS Pathog, 8(5):e1002670.

[137]PrasadK, KhatoonF, RashidS, et al., 2020. Targeting hub genes and pathways of innate immune response in COVID-19: a network biology perspective. Int J Biol Macromol, 163:1-8.

[138]RaiRC, 2020. Host inflammatory responses to intracellular invaders: review study. Life Sci, 240:117084.

[139]RehwinkelJ, GackMU, 2020. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol, 20(9):537-551.

[140]RyoA, SuizuF, YoshidaY, et al., 2003. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/Rela. Mol Cell, 12(6):1413-1426.

[141]RyzhakovG, RandowF, 2007. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J, 26(13):3180-3190.

[142]SaitohT, YamamotoM, MiyagishiM, et al., 2005. A20 is a negative regulator of IFN regulatory factor 3 signaling. J Immunol, 174(3):1507-1512.

[143]SalioM, CerundoloV, 2005. Viral immunity: cross-priming with the help of TLR3. Curr Biol, 15(9):R336-R339.

[144]Sancho-ShimizuV, de DiegoRP, JouanguyE, et al., 2011. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol, 1(6):487-496.

[145]SanderWJ, O'NeillHG, PohlCH, 2017. Prostaglandin E2 as a modulator of viral infections. Front Physiol, 8:89.

[146]SarkarSN, SmithHL, RoweTM, et al., 2003. Double-stranded RNA signaling by Toll-like receptor 3 requires specific tyrosine residues in its cytoplasmic domain. J Biol Chem, 278(7):4393-4396.

[147]SarkarSN, PetersKL, ElcoCP, et al., 2004. Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat Struct Mol Biol, 11(11):1060-1067.

[148]SasaiM, TatematsuM, OshiumiH, et al., 2010. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway. Mol Immunol, 47(6):1283-1291.

[149]SatoR, KatoA, ChimuraT, et al., 2018. Combating herpesvirus encephalitis by potentiating a TLR3‍-‍mTORC2 axis. Nat Immunol, 19(10):1071-1082.

[150]SaxenaM, SabadoRL, La MarM, et al., 2019. Poly-ICLC, a TLR3 agonist, induces transient innate immune responses in patients with treated HIV-infection: a randomized double-blinded placebo controlled trial. Front Immunol, 10:725.

[151]SchmidS, SachsD, TenoeverBR, 2014. Mitogen-activated protein kinase-mediated licensing of interferon regulatory factor 3/7 reinforces the cell response to virus. J Biol Chem, 289(1):299-311.

[152]SchröderM, BowieAG, 2005. TLR3 in antiviral immunity: key player or bystander? Trends Immunol, 26(9):‍462-468.

[153]Sesti-CostaR, FrançozoMCS, SilvaGK, et al., 2017. TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: the role of dendritic cells. PLoS ONE, 12(10):e0185819.

[154]ShinC, ItoY, IchikawaS, et al., 2017. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-‍κB and negatively regulates inflammatory responses. Sci Rep, 7:46097.

[155]SinghD, QiRS, JordanJL, et al., 2013. The human antimicrobial peptide LL-37, but not the mouse ortholog, mCRAMP, can stimulate signaling by poly(I:C) through a FPRL1-dependent pathway. J Biol Chem, 288(12):8258-8268.

[156]SinghS, PandeyK, RathoreYS, et al., 2014. A communication network within the cytoplasmic domain of Toll-like receptors has remained conserved during evolution. J Biomol Struct Dyn, 32(5):694-700.

[157]SioudM, 2006. Innate sensing of self and non-self RNAs by Toll-like receptors. Trends Mol Med, 12(4):167-176.

[158]SongGH, LiuBY, LiZH, et al., 2016. E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1. Nat Immunol, 17(12):1342-1351.

[159]SongXQ, LiuS, WangWD, et al., 2020. E3 ubiquitin ligase RNF170 inhibits innate immune responses by targeting and degrading TLR3 in murine cells. Cell Mol Immunol, 17(8):865-874.

[160]SørengK, NeufeldTP, SimonsenA, 2018. Membrane trafficking in autophagy. Int Rev Cell Mol Biol, 336:1-92.

[161]SorokinAV, KimER, OvchinnikovLP, 2009. Proteasome system of protein degradation and processing. Biochemistry (Mosc), 74(13):1411-1442.

[162]SotoJA, GálvezNMS, AndradeCA, et al., 2020. The role of dendritic cells during infections caused by highly prevalent viruses. Front Immunol, 11:1513.

[163]SpearmanCW, DusheikoGM, HellardM, et al., 2019. Hepatitis C. Lancet, 394(10207):1451-1466.

[164]SunLJ, WuJX, DuFH, et al., 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 339(6121):786-791.

[165]TabetaK, HoebeK, JanssenEM, et al., 2006. The unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol, 7(2):156-164.

[166]TakahashiT, KulkarniNN, LeeEY, et al., 2018. Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci Rep, 8:4032.

[167]TakedaK, AkiraS, 2015. Toll-like receptors. Curr Protoc Immunol, 109:14.12.1-14.12.10.

[168]TanYH, KaganJC, 2019. Innate immune signaling organelles display natural and programmable signaling flexibility. Cell, 177(2):384-398.e11.

[169]TatematsuM, IshiiA, OshiumiH, et al., 2010. A molecular mechanism for Toll-IL-1 receptor domain-containing adaptor molecule-1-mediated IRF-3 activation. J Biol Chem, 285(26):20128-20136.

[170]TavoraB, MedererT, WesselKJ, et al., 2020. Tumoural activation of TLR3‍-‍SLIT2 axis in endothelium drives metastasis. Nature, 586(7828):299-304.

[171]ETTLTjwa, van OordGW, BiestaPJ, et al., 2012. Restoration of TLR3-activated myeloid dendritic cell activity leads to improved natural killer cell function in chronic hepatitis B virus infection. J Virol, 86(8):4102-4109.

[172]ToppingKD, KellyDG, 2019. Investigation of binding characteristics of immobilized Toll-like receptor 3 with poly(I:C) for potential biosensor application. Anal Biochem, 564-565:133-140.

[173]TownT, JengD, AlexopoulouL, et al., 2006. Microglia recognize double-stranded RNA via TLR3. J Immunol, 176(6):3804-3812.

[174]TsengPH, MatsuzawaA, ZhangWZ, et al., 2010. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol, 11(1):70-75.

[175]UehataT, TakeuchiO, 2020. RNA recognition and immunity‍–innate immune sensing and its posttranscriptional regulation mechanisms. Cells, 9(7):1701.

[176]UnterholznerL, KeatingSE, BaranM, et al., 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol, 11(11):997-1004.

[177]WangK, LiuHL, HeYL, et al., 2010. Correlation of TLR1-10 expression in peripheral blood mononuclear cells with chronic hepatitis B and chronic hepatitis B-related liver failure. Hum Immunol, 71(10):950-956.

[178]WangL, WenMY, CaoXT, 2019. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science, 365(6454):eaav0758.

[179]WangP, ZhaoW, ZhaoK, et al., 2015. TRIM26 negatively regulates interferon-‍βproduction and antiviral response through polyubiquitination and degradation of nuclear IRF3. PLoS Pathog, 11(3):e1004726.

[180]WangT, TownT, AlexopoulouL, et al., 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med, 10(12):1366-1373.

[181]WangY, LiuL, DaviesDR, et al., 2010. Dimerization of Toll-like receptor 3 (TLR3) is required for ligand binding. J Biol Chem, 285(47):36836-36841.

[182]WangY, YuanSC, JiaX, et al., 2019. Mitochondria-localised ZNFX1 functions as a dsRNA sensor to initiate antiviral responses through MAVs. Nat Cell Biol, 21(11):‍1346-1356.

[183]WangYY, TangYW, TengL, et al., 2006. Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol, 7(2):‍139-147.

[184]WatanabeA, TatematsuM, SaekiK, et al., 2011. Raftlin is involved in the nucleocapture complex to induce poly(I:C)-mediated TLR3 activation. J Biol Chem, 286(12):10702-10711.

[185]WeberC, MüllerC, PodszuweitA, et al., 2012. Toll-like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR-mediated effects). Immunology, 136(1):64-77.

[186]WilsonJR, de SessionsPF, LeonMA, et al., 2008. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol, 82(17):8262-8271.

[187]WitczakP, Brzezińska-BłaszczykE, AgierJ, 2020. The response of tissue mast cells to TLR3 ligand poly(I:‍C) treatment. J Immunol Res, 2020:2140694.

[188]WitherowDS, GarrisonTR, MillerWE, et al., 2004. β-Arrestin inhibits NF-κB activity by means of its interaction with the NF‍-‍κB inhibitor IκBα. Proc Natl Acad Sci USA, 101(23):8603-8607.

[189]WuF, ZhaoS, YuB, et al., 2020. A new coronavirus associated with human respiratory disease in China. Nature, 579(7798):265-269.

[190]WuFY, NiuZM, ZhouB, et al., 2019. PSMB1 negatively regulates the innate antiviral immunity by facilitating degradation of IKK-ε. Viruses, 11(2):99.

[191]WuHF, LiuHS, ZhaoXY, et al., 2020. IKIP negatively regulates NF-κB activation and inflammation through inhibition of IKKα/β phosphorylation. J Immunol, 204(2):418-427.

[192]WuJX, ChenZJ, 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol, 32:461-488.

[193]WuX, LeiCQ, XiaT, et al., 2019. Regulation of TRIF-mediated innate immune response by K27-linked polyubiquitination and deubiquitination. Nat Commun, 10:4115.

[194]XingJJ, WengLY, YuanB, et al., 2016. Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nat Immunol, 17(12):1373-1380.

[195]XueQH, ZhouZ, LeiXB, et al., 2012. TRIM38 negatively regulates TLR3-mediated IFN-‍βsignaling by targeting TRIF for degradation. PLoS ONE, 7(10):e46825.

[196]YamashitaM, ChattopadhyayS, FensterlV, et al., 2012. Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Sci Signal, 5(233):ra50.

[197]YangQ, ShuHB, 2020. Deciphering the pathways to antiviral innate immunity and inflammation. Adv Immunol, 145:1-36.

[198]YangY, LiaoB, WangSY, et al., 2013. E3 ligase WWP2 negatively regulates TLR3-mediated innate immune response by targeting TRIF for ubiquitination and degradation. Proc Natl Acad Sci USA, 110(13):5115-5120.

[199]YangY, WangSY, HuangZF, et al., 2016. The RNA-binding protein Mex3B is a coreceptor of Toll-like receptor 3 in innate antiviral response. Cell Res, 26(3):288-303.

[200]YeW, HuMM, LeiCQ, et al., 2017. TRIM8 negatively regulates TLR3/4-mediated innate immune response by blocking TRIF-TBK1 interaction. J Immunol, 199(5):1856-1864.

[201]YuYX, HaywardGS, 2010. The ubiquitin E3 ligase RAUL negatively regulates type I interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity, 33(6):863-877.

[202]YuanX, GajanA, ChuQ, et al., 2018. Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer Metastasis Rev, 37(4):733-748.

[203]YukJM, ShinDM, LeeHM, et al., 2011. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat Immunol, 12(8):742-751.

[204]ZangR, LianH, ZhongX, et al., 2020. ZCCHC3 modulates TLR3-mediated signaling by promoting recruitment of TRIF to TLR3. J Mol Cell Biol, 12(4):251-262.

[205]ZengWW, XuM, LiuSQ, et al., 2009. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell, 36(2):315-325.

[206]ZhangJY, ShenBF, 2011. SHP limits TLR signaling, an inducible transcriptional corepressor. Cell Mol Immunol, 8(6):445-446.

[207]ZhangL, ZhaoXY, ZhangM, et al., 2014. Ubiquitin-specific protease 2b negatively regulates IFN-β production and antiviral activity by targeting TANK-binding kinase 1. J Immunol, 193(5):2230-2237.

[208]ZhangLY, XiangWP, WangGL, et al., 2016. Interferon β (IFN-‍β) production during the double-stranded RNA (dsRNA) response in hepatocytes involves coordinated and feedforward signaling through Toll-like receptor 3 (TLR3), RNA-dependent protein kinase (PKR), inducible nitric oxide synthase (iNOS), and Src protein. J Biol Chem, 291(29):15093-15107.

[209]ZhangM, WangLJ, ZhaoXY, et al., 2012. TRAF-interacting protein (TRIP) negatively regulates IFN-‍βproduction and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1. J Exp Med, 209(10):1703-1711.

[210]ZhangQ, BastardP, LiuZY, et al., 2020. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 370(6515):eabd4570.

[211]ZhangSY, JouanguyE, UgoliniS, et al., 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science, 317(5844):1522-1527.

[212]ZhangZQ, KimT, BaoMS, et al., 2011. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity, 34(6):866-878.

[213]ZhaoBY, ShuC, GaoXS, et al., 2016. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci USA, 113(24):E3403-E3412.

[214]ZhaoXB, ZhuHH, YuJ, et al., 2016. c-Cbl-mediated ubiquitination of IRF3 negatively regulates IFN-‍βproduction and cellular antiviral response. Cell Signal, 28(11):1683-1693.

[215]ZhengH, LiQ, ChenR, et al., 2013. The dual-specificity phosphatase DUSP14 negatively regulates tumor necrosis factor- and interleukin-1-induced nuclear factor-κB activation by dephosphorylating the protein kinase TAK1. J Biol Chem, 288(2):819-825.

[216]ZhengQL, HouJ, ZhouY, et al., 2015. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res, 25(10):1121-1136.

[217]ZhengY, GaoCJ, 2020. Fine-tuning of antiviral innate immunity by ubiquitination. Adv Immunol, 145:95-128.

[218]ZhongX, FengL, XuWH, et al., 2020. The zinc-finger protein ZFYVE1 modulates TLR3-mediated signaling by facilitating TLR3 ligand binding. Cell Mol Immunol, 17(7):741-752.

[219]ZhouRY, ZhangQ, XuPL, 2020. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim Biophys Sin, 52(7):757-767.

[220]ZhouY, WangX, SunL, et al., 2016. Toll-like receptor 3-activated macrophages confer anti-HCV activity to hepatocytes through exosomes. FASEB J, 30(12):4132-4140.

[221]ZhuS, WangG, LeiXQ, et al., 2016. Mex3B: a coreceptor to present dsRNA to TLR3. Cell Res, 26(4):391-392.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE