CLC number: Q943.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-09-28
Cited: 6
Clicked: 6532
Qing-bin Wang, Wen Xu, Qing-zhong Xue, Wei-ai Su. Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity[J]. Journal of Zhejiang University Science B, 2010, 11(11): 851-861.
@article{title="Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity",
author="Qing-bin Wang, Wen Xu, Qing-zhong Xue, Wei-ai Su",
journal="Journal of Zhejiang University Science B",
volume="11",
number="11",
pages="851-861",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000137"
}
%0 Journal Article
%T Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity
%A Qing-bin Wang
%A Wen Xu
%A Qing-zhong Xue
%A Wei-ai Su
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 11
%P 851-861
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000137
TY - JOUR
T1 - Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity
A1 - Qing-bin Wang
A1 - Wen Xu
A1 - Qing-zhong Xue
A1 - Wei-ai Su
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 11
SP - 851
EP - 861
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000137
Abstract: Transgenic Brassica compestris L. spp. chinensis plants expressing a choline oxidase (codA) gene from Arthrobacter globiformis were obtained through Agrobacterium tumefaciens-mediated transformation. In the transgenic plants, codA gene expression and its product transportation to chloroplasts were detected by the enzyme-linked immunosorbent assay (ELISA) examination, immunogold localization, and 1H-nuclear magnetic resonance (1H-NMR). stress tolerance was evaluated in the T3 plants under extreme temperature and salinity conditions. The plants of transgenic line 1 (L1) showed significantly higher net photosynthetic rate (Pn) and Pn recovery rate under high (45 °C, 4 h) and low temperature (1 °C, 48 h) treatments, and higher photosynthetic rate under high salinity conditions (100, 200, and 300 mmol/L NaCl, respectively) than the wild-type plants. The enhanced tolerance to high temperature and high salinity stresses in transgenic plants is associated with the accumulation of betaine, which is not found in the wild-type plants. Our results indicate that the introduction of codA gene from Arthrobacter globiformis into Brassica compestris L. spp. chinensis could be a potential strategy for improving the plant tolerance to multiple stresses.
[1]Alia, Hayashi, H., Sakamoto, A., Murata, N., 1998a. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J., 16(2):155-161.
[2]Alia, Hayashi, H., Chen, T.H.H., Murata, N., 1998b. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ., 21(2):232-239.
[3]Alia, Kondo, Y., Sakamoto, A., Nonaka, H., Hayashi, H., Saradhi, P.P., Chen, T.H.H., Murata, N., 1999. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol. Biol., 40(2):279-288.
[4]Blumwald, E., Grover, A., 2006. Salt Tolerance. In: Halford, N. (Ed.), Plant Biotechnology, Current and Future Applications of Genetically Modified Crops. John Wiley & Sons, Ltd., Chichester, UK, p.206-224.
[5]Bohnert, H.J., Jensen, R.G., 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol., 14(3):89-97.
[6]Bohnert, H.J., Nelson, D.E., Jensen, R.G., 1995. Adaptations to environmental stresses. Plant Cell, 7(7):1099-1111.
[7]Chen, H.H.T., Murata, N., 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci., 13(9):499-505.
[8]Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M., Bohnert, H.J., 1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. The Plant Cell, 1(7):715-725.
[9]Gorham, J., 1995. Betaines in Higher Plants—Biosynthesis and Role in Stress Metabolism. In: Wallsgrove, R.M. (Ed.), Amino Acids and Their Derivatives in Higher Plants. Cambridge University Press, Cambridge, p.171-203.
[10]Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M., Murata, N., 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12(1):133-142.
[11]Hayashi, H., Alia, Sakamoto, A., Nonaka, H., Chen, T.H.H., Murata, N., 1998. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J. Plant Res., 111(2):357-362.
[12]He, P.M., Zhang, D.B., Liang, W.Q., Yao, Q.H., Zhang, R.X., 2001. Expression of choline oxidase (codA) enhances salt tolerance of the tobacco. Acta Biochem. Biophys. Sin., 33(5):519-524 (in Chinese).
[13]Holmström, K.O., Somersalo, S., Mandal, A., Palva, T.E., Welin, B., 2000. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot., 51(343):177-185.
[14]Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A., Selvaraj, G., 2000. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol., 122(3):747-756.
[15]Kramer, H.J., Schmidt, R., Günthe, R.A., Becker, G., Suzuki, Y., Seeger, W., 1995. ELISA technique for quantification of surfactant protein B (SP-B) in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med., 152(5):1540-1544.
[16]Mäkelä, P., Munns, R., Colmer, T.D., Condon, A.G., Peltonen-Sainio, P., 1998. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Aust. J. Plant Physiol., 25(6):655-663.
[17]Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., Tyagi, A.K., 2002. Transgenics of an elite indica rice variety Pusa Basmati 1 harboring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet., 106(1):51-57.
[18]Mustardy, L., Cunningham, F.X.Jr., Gantt, E., 1990. Localization and quantitation of chloroplast enzymes and light-harvesting components using immunocytochemical methods. Plant Physiol., 94(1):334-340.
[19]Park, E.J., Jeknic, Z., Pino, M.T., Murata, N., Chen, T.H.H., 2007. Glycinebetaine accumulation in chloroplasts is more effective than that in cytosol in protecting transgenic tomato plants against abiotic stress. Plant Cell Environ., 30(8):994-1005.
[20]Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V., Djilianov, D., 2004. Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem., 42(1):57-63.
[21]Prasad, K.V.S.K., Saradhi, P.P., 2004. Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Sci., 166(5):1197-1212.
[22]Prasad, K.V.S.K., Sharmila, P., Kumar, P.A., Saradhi, P.P., 2000. Transformation of Brassica juncea (L) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed., 6(5):489-499.
[23]Rahman, M.S., Miyake, H., Takeoka, Y., 2002. Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod. Sci., 5(1):33-44.
[24]Rontein, D., Basset, G., Hanson, A.D., 2002. Metabolic engineering of osmoprotectant accumulation in plants. Met. Eng., 4(1):49-56.
[25]Sakamoto, A., Murata, N., 2000. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J. Exp. Bot., 51(342):81-88.
[26]Sakamoto, A., Murata, N., 2001. The use of bacterial choline oxidase, a glycinebetaine synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol., 125(1):180-188.
[27]Sakamoto, A., Murata, N., 2002. The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ., 25(2):163-171.
[28]Sakamoto, A., Alia, Murata, N., 1998. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol., 38(6):1011-1019.
[29]Saneoka, H., Nagasaka, C., Hahn, D.T., Yang, W.J., Premachandra, G.S., Joly, R.J., Rhodes, D., 1995. Salt tolerance of glycinebetaine deficient and containing maize lines. Plant Physiol., 107(2):631-638.
[30]Sawahel, W., 2003. Improved performance of transgenic glycinebetaine-accumulating rice plants under drought stress. Biologia Plantarum, 47(1):39-44.
[31]Schobert, B., 1977. Is there an osmotic regulatory mechanism in algae and higher plants? J. Theor. Biol., 68(1):17-26.
[32]Xu, W., Sun, M.H., Zhu, Y.F., Su, W.A., 2001. Protective effects of glycibetaine on Brassica chinensis under salt stress. Acta Bot. Sin., 43(8):809-814.
[33]Yang, S.Y., 1999. Determination of Chlorophyll Content. In: Tang, Z.C. (Ed.), Modern Experiment Protocol in Plant Physiology. Science Press, Beijing, China, p.95-96 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>