CLC number: R614
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-08-11
Cited: 1
Clicked: 5386
Zdenek Turek, Vladimir Cerny, Renata Parizkova, Jindrich Samek, Martin Oberreiter. Prolonged hypervolemic hemodilution decreases functional capillary density of ileal mucosa in pigs revealed by sidestream dark-field imaging[J]. Journal of Zhejiang University Science B, 2011, 12(10): 867-874.
@article{title="Prolonged hypervolemic hemodilution decreases functional capillary density of ileal mucosa in pigs revealed by sidestream dark-field imaging",
author="Zdenek Turek, Vladimir Cerny, Renata Parizkova, Jindrich Samek, Martin Oberreiter",
journal="Journal of Zhejiang University Science B",
volume="12",
number="10",
pages="867-874",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000385"
}
%0 Journal Article
%T Prolonged hypervolemic hemodilution decreases functional capillary density of ileal mucosa in pigs revealed by sidestream dark-field imaging
%A Zdenek Turek
%A Vladimir Cerny
%A Renata Parizkova
%A Jindrich Samek
%A Martin Oberreiter
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 10
%P 867-874
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000385
TY - JOUR
T1 - Prolonged hypervolemic hemodilution decreases functional capillary density of ileal mucosa in pigs revealed by sidestream dark-field imaging
A1 - Zdenek Turek
A1 - Vladimir Cerny
A1 - Renata Parizkova
A1 - Jindrich Samek
A1 - Martin Oberreiter
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 10
SP - 867
EP - 874
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000385
Abstract: Objective: Hemodilution changes the physical properties of blood by reducing its hematocrit and blood viscosity. We tested whether prolonged hypervolemic hemodilution (HHD) impairs functional capillary density (FCD) of ileal mucosa in healthy mechanically-ventilated pigs and if there is any correlation between changes in FCD of ileal and sublingual mucosas during HHD. Methods: Sixteen domestic female pigs were anesthetized, mechanically-ventilated, and randomly assigned to the HHD (20 ml/(kg∙h) Hartmann’s solution for 3 h) or fluid restrictive (5 ml/(kg∙h) Hartmann’s solution for 3 h) group. Microcirculations of sublingual and ileal mucosas via ileostomy were visualized using sidestream dark-field (SDF) imaging at baseline conditions (t=0 h) and at selected time intervals of fluid therapy (t=1, 2, and 3 h). Results: A significant decrease of ileal FCD (285 (278–292) cm/cm2) in the HHD group was observed after the third hour of HHD when compared to the baseline (360 (350–370) cm/cm2) (P<0.01). This trend was not observed in the restrictive group, where the ileal mucosa FCD was significantly higher after the third hour of fluid therapy as compared to the HHD group (P<0.01). No correlation between microhemodynamic parameters obtained from sublingual and ileal mucosas was found throughout the study. Conclusions: Prolonged HHD established by crystalloid solution significantly decreased ileal villus FCD when compared to restrictive fluid regimen. An inappropriate degree of HHD can be harmful during uncomplicated abdominal surgery.
[1]Boerma, E.C., Mathura, K.R., van der Voort, P.H., Spronk, P.E., Ince, C., 2005. Quantifying bedside-derived imaging of microcirculatory abnornalities in septic patients: a prospective validation study. Crit. Care, 9(6):R601-R606.
[2]Bryson, G.L., Laupacis, A., Wells, G.A., 1998. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta analysis. Anesth. Analg., 86(1):9-15.
[3]Cabrales, P., Martini, J., Intaglieta, M., Tsai, A.G., 2006. Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity. Am. J. Physiol. Heart Circ. Physiol., 291(2):H581-H590.
[4]Cerny, V., Turek, Z., Parizkova, R., 2007. Orthogonal polarization spectral imaging. A review. Physiol. Res., 56(2):141-147.
[5]de Backer, D., Creteur, J., Preiser, J.C., Dubios, M.J., Vincent, J.L., 2002. Microvascular blood flow is altered in patients with sepsis. Am. J. Respir. Crit. Care Med., 166(1):98-104.
[6]de Backer, D., Hollenberg, S., Boerma, C., Goedhart, P., Buchele, G., Ospina-Tascon, G., Dobbe, I., Ince, C., 2007. How to evaluate the microcirculation? Report of a round table conference. Crit. Care, 11(5):R101.
[7]Eckmann, D.M., Bowers, S., Stecker, M., Cheung, A.T., 2000. Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth. Analg., 91(3):539-545.
[8]Entholzner, E., Hargasser, S., Mielke, L., 1992. Hemodynamic effects of preoperative infusion of hydroxyethyl starch (HAES 450/0.7) under isoflurane anesthesia. Fortschr. Anaesthesiol. Notfall Intensivmed., 2:108-114 (in German).
[9]Gottschalk, A., Standl, T.G., Freitag, M., Radtke, P., Rempf, C., Burmeister, M.A., Horn, E.P., Strate, T., Schulte am Esch, J., 2005. Effect of isovolaemic haemodilution on oxygenation of liver and skeletal muscle. Eur. J. Anaesthesiol., 22(3):181-188.
[10]Groner, W., Winkelman, J.W., Hartus, A.G., Ince, C., Bouma, G.J., Messmer, K., Naderu, R.G., 1999. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat. Med., 5(10):1209-1212.
[11]Harris, A.G., Costa, J.J., Delano, F.A., Zweifach, B.W., Schmid-Schonbein, G.W., 1998. Mechanisms of cell injury in rat mesentery and cremaster muscle. Am. J. Physiol. Heart Circ. Physiol., 274(3 Pt 2):H1009-H1015.
[12]Harris, A.G., Sinitsina, I., Messmer, K., 2002. Validation of OPS imaging for microvascular measurements during isovolemic hemodilution and low hematocrits. Am. J. Physiol. Heart Circ. Physiol., 282(4):1502-1509.
[13]Hiltebrand, L.B., Pestel, G., Hager, H., Ratnaraj, J., Sigurdson, G.H., Kurz, A., 2007. Perioperative fluid management: comparison of high, medium and low fluid volume on tissue oxygen pressure in the small bowel and colon. Eur. J. Anaesthesiol., 24(11):927-933.
[14]Holte, K., Sharrock, N.E., Kehlet, H., 2002. Pathophysiology and clinical implications of perioperative fluid excess. Br. J. Anaesth., 89(4):622-632.
[15]Kimberger, O., Fleischmann, E., Brandy, S., Kugener, A., Kabon, B., Hiltebrand, L., Krejci, V., Kurz, A., 2007. Supplemental oxygen, but not supplemental crystalloid fluid, increases tissue oxygen tension in healthy and anastomotic colon in pigs. Anesth. Analg., 105(3):773-779.
[16]Kreimeier, U., Messmer, K., 1996. Hemodilution in clinical surgery: state of the art. World J. Surg., 20(9):1208-1217.
[17]Laks, H., O′Connor, N.E., Pilon, R.N., 1973. Acute normovolemic hemodilution: effects on hemodynamics, oxygen transport, and lung water in anesthetized man. Surg. Forum, 24:201-202.
[18]Lang, K., Boldt, J., Suttner, S., Haisch, G., 2001. Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth. Analg., 93(3):405-409.
[19]Leach, R.M., Treacher, D.F., 2002. The pulmonary physician in critical care 2: oxygen delivery and consumption in the critically ill. Torax, 57(2):170-177.
[20]Lindert, J., Werner, J., Redlin, M., Kuppe, H., Habazettl, H., Pries, A.R., 2002. OPS imaging of human circulation: a short technical report. J. Vasc. Res., 39(4):368-372.
[21]Lobo, D.N., Bostock, K.A., Neal, K.R., Perlina, A.C., Rowlands, B.J., Allison, S.P., 2002. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised control trial. Lancet, 359(9320):1812-1818.
[22]Martikainen, T.J., Tenhunen, J.J., Uusaro, A., Ruokonen, E., 2003. The effects of vasopressin on systemic and splanchnic hemodynamics and metabolism during in endotoxin shock. Anesth. Analg., 97(6):1756-1763.
[23]Mehta, S., Javeshgani, D., Datta, P., Levy, R.D., Magder, S., 1999. Porcine endotoxemic shock is associated with increased expired nitric oxide. Crit. Care Med., 27(2):385-393.
[24]Messmer, K., Lewis, D.H., Sunder-Plassmann, L., 1972. Acute normovolemic hemodilution: changes of central hemodynamics and microcirculatory flow in skeletal muscle. Eur. Surg. Res., 4(1):55-70.
[25]Mielke, L.L., Entholzner, E.K., Kling, M., Breinbauerm, B.E., Burgkart, R., Hargasser, S.R., Hipp, R.F., 1997. Preoperative acute hypervolemic hemodilution with hydroxyethylstarch: an alternative to acute normovolemic hemodilution? Anesth. Analg., 84(1):26-30.
[26]Nakajima, Y., Baudry, N., Duranteau, J., Vicaut, E., 2001. Microcirculation in intestinal villi. A comparison between hemorrhagic and endotoxin shock. Am. J. Respir. Crit. Care Med., 164(8 Pt 1):1526-1530.
[27]Pittner, A., Nalos, M., Astat, P., Yang, Y., Ince, C., Georgieff, M., Brückner, U.B., Radermacher, P., Fröba, G., 2003. Mechanisms of inducible nitric oxide synthase (iNOS) inhibition-related improvement of gut mucosal acidosis during hyperdynamic porcine endotoxemia. Intensive Care Med., 29(2):312-316.
[28]Prien, T., Backhaus, A., Pelster, F., Pircher, W., Bunte, H., Lawin, P., 1990. Effect of intraoperative fluid administration and colloid osmotic pressure on the formation of intestinal edema during gastrointestinal surgery. J. Clin. Anesth., 2(5):317-323.
[29]Robotham, J.L., 2004. Saline volume expansion and cardiovascular physiology: novel observation, old explanation, and new questions. Critical Care, 8(5):315-318.
[30]Sakr, Y., Dubios, M.J., de Backer, D., Creteur, J., Vincent, J.L., 2004. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit. Care Med., 32(9):1825-1831.
[31]Schwarte, L.A., Fournell, A., van Bommel, J., Ince, C., 2005. Redistribution of intestinal microcirculatory oxygenation during acute hemodilution in pigs. J. Appl. Physiol., 98(3):1070-1075.
[32]Segal, J.B., Blasco-Colmenares, E., Norris, E.J., Guallar, E., 2004. Preoperative acute normovolemic hemodilution: a meta analysis. Transfusion, 44(5):632-644.
[33]Singbartl, K., Schleinzer, W., Singbartl, G., 1999. Hypervolemic hemodilution: an alternative to acute normovolemic hemodilution? A mathematical analysis. J. Surg. Res., 86(2):206-212.
[34]Trouwborst, A., van Woerkens, E.C., van Daele, M., Tenbrinck, R., 1990a. Acute hypervolemic hemodilution to avoid blood transfusion during major surgery. Lancet, 336(8726):1295-1297.
[35]Trouwborst, A., Hagenouw, R.R., Jeekel, J., Ong, G.L., 1990b. Hypervolaemic haemodilution in an anaemic Jehovah’s witness. Br. J. Anaesth., 64(5):646-648.
[36]Tsai, A.G., Friesenecker, B., Intaglieta, M., 1995. Capillary flow impairment and functional capillary density. Int. J. Microcirc., 15(5):238-243.
[37]Tsai, A.G., Friesenecker, B., McCarthy, M., Sakai, H., Intaglieta, M., 1998. Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skinfold model. Am. J. Physiol. Heart Circ. Physiol., 275(6 Pt 2):H2170-H2180.
[38]Tugtekin, I.F., Radermacher, P., Theisen, M., Matejovic, M., Stehr, A., Ploner, F., Matura, K., Ince, C., Gergieff, M., Träger, K., 2001. Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med., 27(4):757-766.
[39]Turek, Z., Cerny, V., Parizkova, R., 2008. Noninvasive in vivo assessment of the skeletal muscle and small intestine serous surface microcirculation in rat: sidestream dark-field (SDF) imaging. Physiol. Res., 57(3):365-371.
[40]van der Linden, P., Wathieu, M., Gilbert, E., Engelman, E., Wautrecht, J.C., Lenaers, A., Vincent, J.L., 1994. Cardiovascular effects of moderate normovolaemic hemodilution during enflurane-nitrous oxide anaesthesia in man. Acta Anaesthesiol. Scand., 38(5):490-498.
[41]Vazquez, B.Y., Martini, J., Tsai, A.G., Johnson, P.C., Cabrales, P., Intaglietta, M., 2010. The variability of blood pressure due to small changes of hematocrit. Am. J. Physiol. Heart Circ. Physiol., 299(3):H863-H867.
Open peer comments: Debate/Discuss/Question/Opinion
<1>