CLC number: Q341
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-10-10
Cited: 2
Clicked: 7068
Jie-hong Zhao, Ji-shun Zhang, Yi Wang, Ren-gang Wang, Chun Wu, Long-jiang Fan, Xue-liang Ren. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance[J]. Journal of Zhejiang University Science B, 2011, 12(11): 935-942.
@article{title="DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance",
author="Jie-hong Zhao, Ji-shun Zhang, Yi Wang, Ren-gang Wang, Chun Wu, Long-jiang Fan, Xue-liang Ren",
journal="Journal of Zhejiang University Science B",
volume="12",
number="11",
pages="935-942",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000417"
}
%0 Journal Article
%T DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance
%A Jie-hong Zhao
%A Ji-shun Zhang
%A Yi Wang
%A Ren-gang Wang
%A Chun Wu
%A Long-jiang Fan
%A Xue-liang Ren
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 11
%P 935-942
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000417
TY - JOUR
T1 - DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance
A1 - Jie-hong Zhao
A1 - Ji-shun Zhang
A1 - Yi Wang
A1 - Ren-gang Wang
A1 - Chun Wu
A1 - Long-jiang Fan
A1 - Xue-liang Ren
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 11
SP - 935
EP - 942
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000417
Abstract: DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits.
[1]Ashikawa, I., 2001. Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars. Plant Mol. Biol., 45(1):31-39.
[2]Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes Dev., 16(1):6-21.
[3]Boyko, A., Kovalchuk, I., 2008. Epigenetic control of plant stress response. Environ. Mol. Mutagen., 49(1):61-72.
[4]Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S., 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19):2633-2635.
[5]Cervera, M.T., Ruiz-Garcia, L., Martinez-Zapater, J.M., 2002. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol. Genet. Genomics, 268(4):543-552.
[6]Choi, C.S., Sano, H., 2007. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genomics, 277(5):589-600.
[7]Denduangboripant, J., Piteekan, T., Nantharat, M., 2010. Genetic polymorphism between tobacco cultivar-groups revealed by amplified fragment length polymorphism analysis. J. Agric. Sci., 2(2):41-48.
[8]Hong, L., Deng, X.X., 2005. Analysis of DNA methylation in navel oranges based on MSAP marker. Sci. Agric. Sin., 38(11):2301-2307 (in Chinese).
[9]Keyte, A.L., Percifield, R., Liu, B., Wendel, J.F., 2006. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J. Hered., 97(5):444-450.
[10]Lee, H.S., Chen, Z.J., 2001. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. PNAS, 98(12):6753-6758.
[11]Liu, B., Wendel, J.F., 2003. Epigenetic phenomena and the evolution of plant allopolyploids. Mol. Phylogenet. Evol., 29(3):365-379.
[12]Moon, H.S., Nifong, J.M., Nicholson, J.S., Heineman, A., Lion, K., van der Hoeven, R., Hayes, A.J., Lewis, R.S., 2009. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci., 49(6):2149-2159.
[13]Rassoulzadegan, M., Grandjean, V., Gounon, P., Vincent, S., Gillot, I., Cuzin, F., 2006. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature, 441(7092):469-474.
[14]Ren, N., Timko, M.P., 2001. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 44(4):559-571.
[15]Salmon, A., Clotault, J., Jenczewski, E., Chable, V., Manzanares-Dauleux, M.J., 2008. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci., 174(1):61-70.
[16]Sekhon, R.S., Peterson, T., Chopra, S., 2007. Epigenetic modifications of distinct sequences of the p1 regulatory gene specify tissue-specific expression patterns in maize. Genetics, 175(3):1059-1070.
[17]Steward, N., Ito, M., Yamaguchi, Y., Koizumi, N., Sano, H., 2002. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J. Biol. Chem., 277(40):37741-37746.
[18]Wada, Y., Miyamoto, K., Kusano, T., Sano, H., 2004. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol. Genet. Genomics, 271(6):658-666.
[19]Zhang, H.Y., Liu, X.Z., Li, T.S., Yang, Y.M., 2006. Genetic diversity among flue-cured tobacco (Nicotiana tabacum L.) revealed by amplified fragment length polymorphism. Bot. Stud., 47(3):223-229.
[20]Zhong, X.F., Wang, Y.M., Liu, X.D., Gong, L., Ma, Y., Qi, B., Dong, Y.S., Liu, B., 2009. DNA methylation polymorphism in annual wild soybean (Glycine soja Sieb. et Zucc.) and cultivated soybean (G. max L. Merr.). Can. J. Plant Sci., 89(5):851-863.
Open peer comments: Debate/Discuss/Question/Opinion
<1>