Full Text:   <3544>

Summary:  <2147>

CLC number: S432.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-01-19

Cited: 7

Clicked: 8067

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.2 P.133-142

http://doi.org/10.1631/jzus.B1300110


Molecular variability and evolution of a natural population of tomato yellow leaf curl virus in Shanghai, China*


Author(s):  Xiu-ling Yang, Meng-ning Zhou, Ya-juan Qian, Yan Xie, Xue-ping Zhou

Affiliation(s):  . State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   xiey@zju.edu.cn

Key Words:  Molecular variability, Tomato yellow leaf curl virus (TYLCV), Geminivirus, Evolution


Xiu-ling Yang, Meng-ning Zhou, Ya-juan Qian, Yan Xie, Xue-ping Zhou. Molecular variability and evolution of a natural population of tomato yellow leaf curl virus in Shanghai, China[J]. Journal of Zhejiang University Science B, 2014, 15(2): 133-142.

@article{title="Molecular variability and evolution of a natural population of tomato yellow leaf curl virus in Shanghai, China",
author="Xiu-ling Yang, Meng-ning Zhou, Ya-juan Qian, Yan Xie, Xue-ping Zhou",
journal="Journal of Zhejiang University Science B",
volume="15",
number="2",
pages="133-142",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300110"
}

%0 Journal Article
%T Molecular variability and evolution of a natural population of tomato yellow leaf curl virus in Shanghai, China
%A Xiu-ling Yang
%A Meng-ning Zhou
%A Ya-juan Qian
%A Yan Xie
%A Xue-ping Zhou
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 2
%P 133-142
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300110

TY - JOUR
T1 - Molecular variability and evolution of a natural population of tomato yellow leaf curl virus in Shanghai, China
A1 - Xiu-ling Yang
A1 - Meng-ning Zhou
A1 - Ya-juan Qian
A1 - Yan Xie
A1 - Xue-ping Zhou
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 2
SP - 133
EP - 142
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300110


Abstract: 
tomato yellow leaf curl virus (TYLCV), belonging to the genus Begomovirus of the family Geminiviridae, is emerging as the most destructive pathogen of tomato plants. Since the first report of TYLCV in Shanghai, China in 2006, TYLCV has spread rapidly to 13 provinces or autonomous regions of China. In this study, the molecular variability and evolution of TYLCV were monitored in Shanghai from its first upsurge in 2006 until 2010. Full-length genomic sequences of 26 isolates were obtained by rolling circle amplification. Sequence analysis showed that the intergenic region was the most variable, with a mean mutation rate of 4.81×10−3 nucleotide substitutions per site per year. Genetic differentiation was found within isolates obtained from 2006, 2009, and 2010, though a linear increase in genetic diversity over time was not evident. Whilst significant parts of TYLCV genes were under negative selection, the C4 gene embedded entirely within the C1 gene had a tendency to undergo positive selection. Our results indicate that a mechanism of independent evolution of overlapping regions could apply to the natural population of TYLCV in Shanghai, China.

番茄黄化曲叶病毒自然种群的分子变异和进化研究

研究目的:2006年我国上海首次发现番茄黄化曲叶病毒(TYLCV),随后TYLCV迅速蔓延至全国13个省份和自治区。本研究分析了2006至2010年期间TYLCV在我国首发地上海市的分子变异规律。
创新要点:本研究持续五年追踪田间TYLCV,分析TYLCV的全长基因组序列、分子变异及种群遗传结构,为防控TYLCV提供理论依据。
研究方法:2006至2010年从上海采集了26个TYLCV的分离物,利用高保真性的滚环扩增技术获得TYLCV分离物的全长基因组。应用MEGA5等生物信息学软件分析TYLCV的分子变异。
重要结论:TYLCV自然种群具有与RNA病毒相似的突变率,以基因间隔区的分子变异最大,平均突变率为4.81×10−3(见图2和表2)。TYLCV的大部分基因都处于负向选择,但包含在C1开放阅读框内的C4,却与C1承受着不同的选择压而处于正向选择(见图3和表6)。

关键词:分子变异;番茄黄化曲叶病毒(TYLCV);双生病毒;进化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Cohen, S., Antignus, Y., 1994. Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes.  Advances in Disease Vector Research. Springer-Verlag,New York :259-288. 


[2] Czosnek, H., Ghanim, M., 2011.  Bemisia tabaci—tomato yellow leaf curl virus interaction causing worldwide epidemics. The Whitefly, (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants, Springer Netherlands,:51-67. 


[3] Delatte, H., Holota, H., Moury, B., 2007. Evidence for a founder effect after introduction of tomato yellow leaf curl virus-mild in an insular environment. J Mol Evol, 65(1):112-118. 


[4] Domingo, E., Holland, J.J., 1997. RNA virus mutations and fitness for survival. Annu Rev Microbiol, 51(1):151-178. 


[5] Duffy, S., Holmes, E.C., 2008. Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol, 82(2):957-965. 


[6] Duffy, S., Holmes, E.C., 2009. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J Gen Virol, 90(6):1539-1547. 


[7] Duffy, S., Shackelton, L.A., Holmes, E.C., 2008. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet, 9(4):267-276. 


[8] Ge, L., Zhang, J., Zhou, X., 2007. Genetic structure and population variability of tomato yellow leaf curl China virus. J Virol, 81(11):5902-5907. 


[9] Glick, E., Zrachya, A., Levy, Y., 2008. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. PNAS, 105(1):157-161. 


[10] Guo, W., Jiang, T., Zhang, X., 2008. Molecular variation of satellite DNAβ molecules associated with Malvastrum yellow vein virus and their role in pathogenicity. Appl Environ Microbiol, 74(6):1909-1913. 


[11] Guo, W., Yang, X., Xie, Y., 2009. Tomato yellow leaf curl Thailand virus-[Y72] from Yunnan is a monopartite begomovirus associated with DNAβ. Virus Genes, 38(2):328-333. 


[12] Haible, D., Kober, S., Jeske, H., 2006. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods, 135(1):9-16. 


[13] Hall, T., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser, 41:95-98. 

[14] Hanley-Bowdoin, L., Settlage, S.B., Orozco, B.M., 1999. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol, 18(1):71-106. 


[15] Isnard, M., Granier, M., Frutos, R., 1998. Quasispecies nature of three maize streak virus isolates obtained through different modes of selection from a population used to assess response to infection of maize cultivars. J Gen Virol, 79(12):3091-3099. 


[16] Jenkins, G.M., Rambaut, A., Pybus, O.G., 2002. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol, 54(2):156-165. 


[17] Jiang, L., Wei, C.H., Li, Y., 2012. Viral suppression of RNA silencing. Sci China C Life Sci, 55(2):109-118. 


[18] Korber, B., 2002. HIV signature and sequence similarities.  Computational and Evolutionary Analysis of HIV Molecular Sequences. Kluwer Academic Publishers,Boston, Massachusetts :55-72. 

[19] Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11):1451-1452. 


[20] Melgarejo, T.A., Kon, T., Rojas, M.R., 2013. Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol, 87(10):5397-5413. 


[21] Moriones, E., Navas-Castillo, J., 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res, 71(1-2):123-134. 


[22] Padidam, M., Beachy, R.N., Fauquet, C.M., 1995. Classification and identification of geminiviruses using sequence comparisons. J Gen Virol, 76(Pt 2):249-263. 


[23] Pagan, I., Holmes, E.C., 2010. Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. J Virol, 84(12):6177-6187. 


[24] Pagan, I., Firth, C., Holmes, E.C., 2010. Phylogenetic analysis reveals rapid evolutionary dynamics in the plant RNA virus genus tobamovirus. J Mol Evol, 71(4):298-307. 


[25] Raja, P., Sanville, B.C., Buchmann, R.C., 2008. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol, 82(18):8997-9007. 


[26] Raja, P., Wolf, J.N., Bisaro, D.M., 2010. RNA silencing directed against geminiviruses: post-transcriptional and epigenetic components. Biochim Biophys Acta, 1799(3):337-351. 


[27] Roossinck, M.J., 1997. Mechanisms of plant virus evolution. Annu Rev Phytopathol, 35(1):191-209. 


[28] Sanchez-Campos, S., Navas-Castillo, J., Camero, R., 1999. Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology, 89(11):1038-1043. 


[29] Sanchez-Campos, S., Diaz, J.A., Monci, F., 2002. High genetic stability of the Begomovirus tomato yellow leaf curl Sardinia virus in southern Spain over an 8-year period. Phytopathology, 92(8):842-849. 


[30] Sanz, A.I., Fraile, A., Gallego, J.M., 1999. Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. J Mol Evol, 49(5):672-681. 


[31] Simmons, H.E., Holmes, E.C., Stephenson, A.G., 2008. Rapid evolutionary dynamics of zucchini yellow mosaic virus. J Gen Virol, 89(4):1081-1085. 


[32] Tamura, K., Peterson, D., Peterson, N., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10):2731-2739. 


[33] Thompson, J.D., Gibson, T.J., Higgins, D.G., 2002. Multiple sequence alignment using ClustalW and ClustalX. Curr Prot Bioinf, 00:2.3.1-2.3.22. 


[34] van der Walt, E., Martin, D.P., Varsani, A., 2008. Experimental observations of rapid Maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virol J, 5:104


[35] Wu, J.B., Dai, F.M., Zhou, X.P., 2006. First report of tomato yellow leaf curl virus in China. Plant Dis, 90(10):1359-1359. 


[36] Yang, X., Xie, Y., Raja, P., 2011. Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog, 7(10):e1002329


[37] Zaaijer, H.L., van Hemert, F.J., Koppelman, M.H., 2007. Independent evolution of overlapping polymerase and surface protein genes of hepatitis B virus. J Gen Virol, 88(Pt 8):2137-2143. 


[38] Zhang, H., Gong, H., Zhou, X., 2009. Molecular characterization and pathogenicity of tomato yellow leaf curl virus in China. Virus Genes, 39(2):249-255. 


[39] Zhang, Z., Chen, H., Huang, X., 2011. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in ArabidopsisPlant Cell, 23(1):273-288. 


[40] Zhou, X.P., Xie, Y., Zhang, Z.K., 2001. Molecular characterization of a distinct begomovirus infecting tobacco in Yunnan, China. Arch Virol, 146(8):1599-1606. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE