References
[1] Bateman, A., Coin, L., Durbin, R., 2004. The Pfam protein families database.
Nucl Acids Res, 32(Suppl. 1):D138-D141.
[2] Chang, P.K., 2008. A highly efficient gene-targeting system for
Aspergillus parasiticus
.
Lett Appl Microbiol, 46(5):587-592.
[3] Choquer, M., Robin, G., Le Pêcheur, P., 2008.
Ku70 or
Ku80 deficiencies in the fungus
Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context.
FEMS Microbiol Lett, 289(2):225-232.
[4] da Silva Ferreira, M.E., Kress, M.R., Savoldi, M., 2006. The
akuB
KU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in
Aspergillus fumigatus
.
Eukaryot Cell, 5(1):207-211.
[5] Eckert, J.W., Eaks, I., 1989. Postharvest disorders and diseases of citrus fruits.
Citrus Ind, 5:179-260.
[6] Haber, J.E., 2000. Partners and pathways: repairing a double-strand break.
Trends Genet, 16(6):259-264.
[7] Hamamoto, H., Hasegawa, K., Nakaune, R., 2000. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (
CYP51) in
Penicillium digitatum
.
Appl Environ Microbiol, 66(8):3421-3426.
[8] Ishibashi, K., Suzuki, K., Ando, Y., 2006. Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in
Neurospora
.
PNAS, 103(40):14871-14876.
[9] Jiang, J., Liu, X., Yin, Y., 2011. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in
Fusarium graminearum
.
PLoS ONE, 6(11):e28291
[10] Jones, J.M., Gellert, M., Yang, W., 2001. A Ku bridge over broken DNA.
Structure, 9(10):881-884.
[11] Kanaar, R., Hoeijmakers, J.H., van Gent, D.C., 1998. Molecular mechanisms of DNA double-strand break repair.
Trends Cell Biol, 8(12):483-489.
[12] Kanetis, L., Frster, H., Adaskaveg, J.E., 2007. Comparative efficacy of the new postharvest fungicides azoxystrobin, fludioxonil, and pyrimethanil for managing citrus green mold.
Plant Dis, 91(11):1502-1511.
[13] Krappmann, S., Sasse, C., Braus, G.H., 2006. Gene targeting in
Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background.
Eukaryot Cell, 5(1):212-215.
[14] Li, Z.H., Du, C.M., Zhong, Y.H., 2010. Development of a highly efficient gene targeting system allowing rapid genetic manipulations in
Penicillium decumbens
.
Appl Microbiol Biotechnol, 87(3):1065-1076.
[15] Macarisin, D., Cohen, L., Eick, A., 2007.
Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit.
Phytopathology, 97(11):1491-1500.
[16] Marcet-Houben, M., Ballester, A.R., de la Fuente, B., 2012. Genome sequence of the necrotrophic fungus
Penicillium digitatum, the main postharvest pathogen of citrus.
BMC Genomics, 13(1):646
[17] Maruyama, J.I., Kitamoto, K., 2008. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (∆
ligD) in
Aspergillus oryzae
.
Biotechnol Lett, 30(10):1811-1817.
[18] Meyer, V., Arentshorst, M., El-Ghezal, A., 2007. Highly efficient gene targeting in the
Aspergillus niger kusA mutant.
J Biotechnol, 128(4):770-775.
[19] Nakaune, R., Hamamoto, H., Imada, J., 2002. A novel ABC transporter gene,
PMR5, is involved in multidrug resistance in the phytopathogenic fungus
Penicillium digitatum
.
Mol Genet Genomics, 267(2):179-185.
[20] Nayak, T., Szewczyk, E., Oakley, C.E., 2006. A versatile and efficient gene-targeting system for
Aspergillus nidulans
.
Genetics, 172(3):1557-1566.
[21] Ninomiya, Y., Suzuki, K., Ishii, C., 2004. Highly efficient gene replacements in
Neurospora strains deficient for nonhomologous end-joining.
PNAS, 101(33):12248-12253.
[22] Sun, X., Ruan, R., Lin, L., 2013. Genomewide investigation into DNA elements and ABC transporters involved in imazalil resistance in
Penicillium digitatum
.
FEMS Microbiol Lett, 348(1):11-18.
[23] van Dyck, E., Stasiak, A.Z., Stasiak, A., 1999. Binding of double-strand breaks in DNA by human Rad52 protein.
Nature, 398(6729):728-731.
[24] Villalba, F., Collemare, J., Landraud, P., 2008. Improved gene targeting in
Magnaporthe grisea by inactivation of
MgKU80 required for non-homologous end joining.
Fungal Genet Biol, 45(1):68-75.
[25] Wang, J.Y., Li, H.Y., 2008. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic fungus
Penicillium digitatum
.
J Zhejiang Univ-Sci B, 9(10):823-828.
[26] Wang, J.Y., Sun, X.P., Lin, L.Y., 2012. PdMfs1, a major facilitator superfamily transporter from
Penicillium digitatum, is partially involved in the imazalil-resistance and pathogenicity.
Afr J Microbiol Res, 6(1):95-105.
[27] Wang, N.Y., Yang, S.L., Lin, C.H., 2011. Gene inactivation in the citrus pathogenic fungus
Alternaria alternata defect at the
Ku70 locus associated with non-homologous end joining.
World J Microbiol Biotechnol, 27(8):1817-1826.
[28] Zhang, T., Xu, Q., Sun, X., 2013. The calcineurin-responsive transcription factor Crz1 is required for conidation, full virulence and DMI resistance in
Penicillium digitatum
.
Microbiol Res, 168(4):211-222.
[29] Zhang, T., Sun, X., Xu, Q., 2013.
PdSNF1, a sucrose non-fermenting protein kinase gene, is required for
Penicillium digitatum conidiation and virulence.
Appl Microbiol Biotechnol, 97(12):5433-5445.
[30] Zhang, T., Sun, X., Xu, Q., 2013. The pH signaling transcription factor PacC is required for full virulence in
Penicillium digitatum
.
Appl Microbiol Biotechnol, 97(20):9087-9098.
[31] Zhang, Z., Zhu, Z., Ma, Z., 2009. A molecular mechanism of azoxystrobin resistance in
Penicillium digitatum UV mutants and a PCR-based assay for detection of azoxystrobin-resistant strains in packing- or store-house isolates.
Int J Food Microbiol, 131(2-3):157-161.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Qing-qing Huang<819075736@qq.com>
2015-06-12 10:12:23
Dear author,
Where is the Table S1,I couldn't find it. I want to make it as a reference.I am looking forward to your help