Full Text:   <3744>

Summary:  <2220>

CLC number: Q936

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-03-10

Cited: 17

Clicked: 9060

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.4 P.343-352

http://doi.org/10.1631/jzus.B1300246


Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design*


Author(s):  Leticia I. Ramrez-Cavazos1, Charles Junghanns2, Rakesh Nair3, Diana L. Crdenas-Chvez1, Carlos Hernndez-Luna4, Spiros N. Agathos3, Roberto Parra1

Affiliation(s):  1. Centro del Agua para Amrica Latina y el Caribe, Tecnolgico de Monterrey, Campus Monterrey, NL 64849, Mexico; more

Corresponding email(s):   r.parra@itesm.mx

Key Words:  Enhanced laccase production, Central composite design, Screening media, Inducers, Tomato juice medium, Soybean oil, Copper sulfate


Leticia I. Ramrez-Cavazos, Charles Junghanns, Rakesh Nair, Diana L. Crdenas-Chvez, Carlos Hernndez-Luna, Spiros N. Agathos, Roberto Parra. Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design[J]. Journal of Zhejiang University Science B, 2014, 15(4): 343-352.

@article{title="Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design",
author="Leticia I. Ramrez-Cavazos, Charles Junghanns, Rakesh Nair, Diana L. Crdenas-Chvez, Carlos Hernndez-Luna, Spiros N. Agathos, Roberto Parra",
journal="Journal of Zhejiang University Science B",
volume="15",
number="4",
pages="343-352",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300246"
}

%0 Journal Article
%T Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design
%A Leticia I. Ramrez-Cavazos
%A Charles Junghanns
%A Rakesh Nair
%A Diana L. Crdenas-Chvez
%A Carlos Hernndez-Luna
%A Spiros N. Agathos
%A Roberto Parra
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 4
%P 343-352
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300246

TY - JOUR
T1 - Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design
A1 - Leticia I. Ramrez-Cavazos
A1 - Charles Junghanns
A1 - Rakesh Nair
A1 - Diana L. Crdenas-Chvez
A1 - Carlos Hernndez-Luna
A1 - Spiros N. Agathos
A1 - Roberto Parra
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 4
SP - 343
EP - 352
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300246


Abstract: 
The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143 000 IU/L (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20 000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers.

中心组合设计方法提高血红密孔菌(Pycnoporus sanguineus)耐热漆酶的产量

研究目的:优化获得血红密孔菌(P. sanguineus)的最佳培养基组成,提高耐热漆酶的产量。
创新要点:获得了目前文献报道的最高水平的漆酶活力。
研究方法:通过单因素试验研究了不同培养基(番茄汁、麦麸、麦芽提取物和葡萄糖细菌蛋白胨培养基)和不同组合诱导剂(大豆油、阿魏酸、没食子酸、二甲基苯胺、酸性蓝62和活性蓝19分别与硫酸铜组合诱导剂)对P. sanguineus产耐热漆酶的影响。在此基础上采用中心组合试验设计,进一步研究了番茄汁培养基结合硫酸铜和大豆油组合诱导剂对P. sanguineus产耐热漆酶的影响。利用SAS10.0和响应面分析方法对试验结果进行了统计分析和建立回归模型。
重要结论:通过中心组合设计优化得出P. sanguineus产耐热漆酶的最优培养基条件:以36.8%番茄汁为培养基,以3 mmol/L硫酸铜和1%大豆油作为组合诱导剂。该条件下在10 L搅拌槽生物反应器中漆酶活力达到了143000 IU/L(2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)为底物,pH值为3.0)。

关键词:漆酶产量;中心组合设计;培养基筛选;诱导剂;番茄汁;大豆油;硫酸铜

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Baldrian, P., 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol, 32(1):78-91. 


[2] Bertrand, T., Jolivalt, C., Briozzo, P., 2002. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry, 41(23):7325-7333. 


[3] Bollag, J.M., Leonowicz, A., 1984. Comparative studies of extracellular fungal laccases. Appl Environ Microbiol, 48(4):849-854. 


[4] Carbajo, J., Junca, H., Terrn, M., 2002. Tannic acid induces transcription of laccase gene cglcc1 in the white-rot fungus Coriolopsis gallicaCan J Microbiol, 48(12):1041-1047. 


[5] Chu, I.M., Lee, C., Li, T.S., 1992. Production and degradation of alkaline protease in batch cultures of Bacillus subtilis ATCC 14416. Enzyme Microb Technol, 14(9):755-761. 


[6] Collins, P.J., Dobson, A.D., 1997. Regulation of laccase gene transcription in Trametes versicolorAppl Environ Microbiol, 63(9):3444-3450. 


[7] Dantn-Gonzlez, E., Vite-Vallejo, O., Martnez-Anaya, C., 2008. Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol, 11:163-169. 


[8] Dekker, R.F., Barbosa, A.M., Giese, E.C., 2007. Influence of nutrients on enhancing laccase production by Botryosphaeria rhodina MAMB-05. Int Microbiol, 10(3):177-185. 


[9] Eggert, C., Temp, U., Erikkson, K.E.L., 1996. The ligninolytic system of the white-rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol, 62(4):1151-1158. 


[10] Galhaup, C., Haltrich, D., 2001. Enhanced formation of laccase activity by the white rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol, 56(1-2):225-232. 


[11] Galhaup, C., Wagner, H., Hinterstoisser, B., 2002. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescensEnzyme Microb Technol, 30(4):529-536. 


[12] Gochev, V.K., Krastanov, A.I., 2007. Fungal laccases. Bulg J Agric Sci, 13:75-83. 

[13] Hernndez-Luna, C., Gutirrez-Soto, G., Salcedo-Martinez, S., 2008. Screening for decolorizing basidiomycetes in Mexico. W J Microbiol Biotechnol, 24(4):465-473. 


[14] Junghanns, C., Parra, R., Keshavarz, T., 2008. Towards higher laccase activities produced by aquatic ascomycetous fungi through combination of elicitors and an alternative substrate. Eng Life Sci, 8(3):277-285. 


[15] Kudanga, T., Nyanhongo, G.S., Guebitz, G.M., 2011. Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb Technol, 48(3):195-208. 


[16] Kunamneni, A., Ballesteros, A., Plou, F.J., 2007. Fungal laccase—a versatile enzyme for biotechnological applications.  Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Formatex-Badajoz,Spain :233-244. 

[17] Lee, I.Y., Jung, K.H., Lee, C.H., 1999. Enhanced production of laccase in Trametes versicolor by the addition of ethanol. Biotechnol Lett, 21(11):965-968. 


[18] Leonowicz, A., Trojanowski, J., Orlicz, B., 1978. Induction of laccase in Basidiomycetes: apparent activity of the inducible and constitutive forms of the enzyme with phenolic substrates. Acta Biochim Pol, 25(4):369-378. 


[19] Liers, C., Ullrich, R., Pecyna, M., 2007. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorphaEnzyme Microb Technol, 41(6-7):785-793. 


[20] Litthauer, D., van Vuuren, M.J., van Tonder, A., 2007. Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme Microb Technol, 40(4):563-568. 


[21] Liu, L., Lin, Z., Zheng, T., 2009. Fermentation optimization and characterization of the laccase from Plerotus ostreatus strain 10969. Enzyme Microb Technol, 44(6-7):426-433. 


[22] Lomascolo, A., Cayol, J.L., Roche, M., 2002. Molecular clustering of Pycnoporus strains from various geographic origins and isolation of monokariotic strains for laccase hyperproduction. Mycol Res, 106(10):1193-1203. 


[23] Michniewicz, A., Ullrich, R., Ledakowicz, S., 2006. The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Appl Microbiol Biotechnol, 69(6):682-688. 


[24] Mueangtoom, K., Kittl, R., Mann, O., 2010. Low pH dye decolorization with ascomycete Lamprospora wrightii laccase. Biotechnol J, 5(8):857-870. 


[25] Nair, R.R., Demarche, P., Agathos, S.N., 2013. Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micropollutants in wastewater. N Biotechnol, 30(6):814-823. 


[26] Osma, J.F., Saravia, V., Toca-Herrera, J., 2007. Mandarin peelings: the best carbon source to produce laccase by static cultures of Trametes pubescensChemosphere, 67(8):1677-1680. 


[27] Osma, J.F., Toca-Herrera, J.L., Rodrguez-Couto, S., 2011. Cost analysis in laccase production. J Environ Manage, 92(11):2907-2912. 


[28] Palmieri, G., Giardina, P., Bianco, C., 2000. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatusAppl Environ Microbiol, 66(3):920-924. 


[29] Pointing, S.B., Jones, E., Vrijmoed, L., 2000. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia, 92(1):139-144. 


[30] Rodrguez-Couto, S., Toca-Herrera, J.L., 2007. Laccase production at reactor scale by filamentous fungi. Biotechnol Adv, 25(6):558-569. 


[31] Rodrguez-Couto, S., Osma, J.F., Toca-Herrera, J.L., 2009. Removal of synthetic dyes by an eco-friendly strategy. Eng Life Sci, 9(2):116-123. 


[32] Rogalski, J., Janusz, G., Legiec, D., 2011. Purification of extracellular laccase from Rhizoctonia praticolaJ Fac Agric, 56(1):1-7. 

[33] Trovaslet, M., Estelle, E., Guiavarch, Y., 2007. Potential of a Pycnoporus sanguineus laccase in bioremediation of wastewater and kinetic activation in the presence of an anthraquinonic acid dye. Enzyme Microb Technol, 41(3):368-376. 


[34] Ullrich, R., Huong, L.M., Dung, N.L., 2005. Laccase from the medicinal mushroom Agaricus blazei: production, purification and characterization. Appl Microbiol Biotechnol, 67(3):357-363. 


[35] Uzan, E., Nousiainen, P., Balland, V., 2010. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications. J Appl Microbiol, 108(6):2199-2213. 


[36] van der Merwe, J.J., 2002.  Production of Laccase by the White-Rot Fungus . MS Thesis, University of the Free State,Bloemfontein, South Africa :

[37] Vanhulle, S., Radman, R., Parra, R., 2007. Effect of mannan oligosaccharide elicitor and ferulic acid on enhancement of laccases. Enzyme Microb Technol, 40(7):1712-1718. 


[38] Vanhulle, S., Enaud, E., Trovaslet, M., 2007. Overlap of laccases/cellobiose dehydrogenase activities during the decolourisation of anthraquinonic dyes with close chemical structures by Pycnoporus strains. Enzyme Microb Technol, 40(7):1723-1731. 


[39] Vite-Vallejo, O., Palomares, L.A., Dantn-Gonzlez, E., 2009. The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microb Technol, 45(3):233-239. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE