References
[1] Agrawal, N., Banerjee, R., 2008. Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine β-synthase sumoylation.
PLoS ONE, 3(12):e4032
[2] Aloia, L., Di Stefano, B., Di Croce, L., 2013. Polycomb complexes in stem cells and embryonic development.
Development, 140(12):2525-2534.
[3] Atchison, L., Ghias, A., Wilkinson, F., 2003. Transcription factor YY1 functions as a PcG protein
in vivo
.
EMBO J, 22(6):1347-1358.
[4] Basu, A., Wilkinson, F.H., Colavita, K., 2014. YY1 DNA binding and interaction with YAF2 is essential for polycomb recruitment.
Nucl Acids Res, 42(4):2208-2223.
[5] Baumann, C., de la Fuente, R., 2011. Role of polycomb group protein Cbx2/M33 in meiosis onset and maintenance of chromosome stability in the mammalian germline.
Genes, 2(1):59-80.
[6] Bengani, H., Mendiratta, S., Maini, J., 2013. Identification and validation of a putative polycomb responsive element in the human genome.
PLoS ONE, 8(6):e67217
[7] Bernard, D., Martinez-Leal, J.F., Rizzo, S., 2005. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the
Ink4a/Arf locus.
Oncogene, 24(36):5543-5551.
[8] Bernstein, B.E., Mikkelsen, T.S., Xie, X., 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
Cell, 125(2):315-326.
[9] Bernstein, E., Duncan, E.M., Masui, O., 2006. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin.
Mol Cell Biol, 26(7):2560-2569.
[10] Bezsonova, I., Walker, J.R., Bacik, J.P., 2009. Ring1B contains a ubiquitin-like docking module for interaction with Cbx proteins.
Biochemistry, 48(44):10542-10548.
[11] Biason-Lauber, A., Konrad, D., Meyer, M., 2009. Ovaries and female phenotype in a girl with 46, XY karyotype and mutations in the
CBX2 gene.
Am J Hum Genet, 84(5):658-663.
[12] Brockdorff, N., 2013. Noncoding RNA and polycomb recruitment.
RNA, 19(4):429-442.
[13] Brookes, E., de Santiago, I., Hebenstreit, D., 2012. Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs.
Cell Stem Cell, 10(2):157-170.
[14] Brown, J.L., Kassis, J.A., 2013. Architectural and functional diversity of polycomb group response elements in
Drosophila
.
Genetics, 195(2):407-419.
[15] Buchwald, G., van der Stoop, P., Weichenrieder, O., 2006. Structure and E3-ligase activity of the ring-ring complex of polycomb proteins Bmi1 and Ring1b.
EMBO J, 25(11):2465-2474.
[16] Buschbeck, M., Uribesalgo, I., Wibowo, I., 2009. The histone variant macroH2A is an epigenetic regulator of key developmental genes.
Nat Struct Mol Biol, 16(10):1074-1079.
[17] Cantin, G.T., Yi, W., Lu, B., 2008. Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis.
J Proteome Res, 7(3):1346-1351.
[18] Chen, R.Q., Yang, Q.K., Lu, B.W., 2009. CDC25B mediates rapamycin-induced oncogenic responses in cancer cells.
Cancer Res, 69(6):2663-2668.
[19] Cor, N., Bel, S., Gaunt, S.J., 1997. Altered cellular proliferation and mesoderm patterning in polycomb-M33-deficient mice.
Development, 124(3):721-729.
[20] Cor, N., Joly, F., Boned, A., 2004. Disruption of E2F signaling suppresses the
INK4a-induced proliferative defect in M33-deficient mice.
Oncogene, 23(46):7660-7668.
[21] Crea, F., Paolicchi, E., Marquez, V.E., 2012. Polycomb genes and cancer: time for clinical application?.
Crit Rev Oncol Hematol, 83(2):184-193.
[22] Creyghton, M.P., Markoulaki, S., Levine, S.S., 2008. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment.
Cell, 135(4):649-661.
[23] Daub, H., Olsen, J.V., Bairlein, M., 2008. Kinase-selective enrichment enables quantitative phospho-proteomics of the kinome across the cell cycle.
Mol Cell, 31(3):438-448.
[24] Dephoure, N., Zhou, C., Villen, J., 2008. A quantitative atlas of mitotic phosphorylation.
PNAS, 105(31):10762-10767.
[25] Dietrich, N., Bracken, A.P., Trinh, E., 2007. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus.
EMBO J, 26(6):1637-1648.
[26] Dou, H., Huang, C., van Nguyen, T., 2011. SUMOylation and de-SUMOylation in response to DNA damage.
FEBS Lett, 585(18):2891-2896.
[27] Forzati, F., Federico, A., Pallante, P., 2012. CBX7 is a tumor suppressor in mice and humans.
J Clin Invest, 122(2):612-623.
[28] Forzati, F., Federico, A., Pallante, P., 2012. Tumor suppressor activity of CBX7 in lung carcinogenesis.
Cell Cycle, 11(10):1888-1891.
[29] Galanty, Y., Belotserkovskaya, R., Coates, J., 2009. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks.
Nature, 462(7275):935-939.
[30] Gao, Z., Zhang, J., Bonasio, R., 2012. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes.
Mol Cell, 45(3):344-356.
[31] Gil, J., Bernard, D., Martinez, D., 2004. Polycomb CBX7 has a unifying role in cellular lifespan.
Nat Cell Biol, 6(1):67-72.
[32] Hannafon, B.N., Sebastiani, P., de las Morenas, ., 2011. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer.
Breast Cancer Res, 13(2):R24
[33] Hatano, A., Matsumoto, M., Higashinakagawa, T., 2010. Phosphorylation of the chromodomain changes the binding specificity of Cbx2 for methylated histone H3.
Biochem Biophys Res Commun, 397(1):93-99.
[34] Hinz, S., Kempkensteffen, C., Christoph, F., 2008. Expression parameters of the polycomb group proteins BMI1, SUZ12, RING1 and CBX7 in urothelial carcinoma of the bladder and their prognostic relevance.
Tumour Biol, 29(5):323-329.
[35] Ismail, I.H., Gagne, J.P., Caron, M.C., 2012. CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage.
Nucl Acids Res, 40(12):5497-5510.
[36] Kagey, M.H., Melhuish, T.A., Wotton, D., 2003. The polycomb protein Pc2 is a SUMO E3.
Cell, 113(1):127-137.
[37] Kang, X., Qi, Y., Zuo, Y., 2010. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development.
Mol Cell, 38(2):191-201.
[38] Kanhere, A., Viiri, K., Araujo, C.C., 2010. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2.
Mol Cell, 38(5):675-688.
[39] Karamitopoulou, E., Pallante, P., Zlobec, I., 2010. Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer.
Eur J Cancer, 46(8):1438-1444.
[40] Katoh-Fukui, Y., Tsuchiya, R., Shiroishi, T., 1998. Male-to-female sex reversal in M33 mutant mice.
Nature, 393(6686):688-692.
[41] Katoh-Fukui, Y., Owaki, A., Toyama, Y., 2005. Mouse polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression.
Blood, 106(5):1612-1620.
[42] Katoh-Fukui, Y., Miyabayashi, K., Komatsu, T., 2012. Cbx2, a polycomb group gene, is required for
Sry gene expression in mice.
Endocrinology, 153(2):913-924.
[43] Klauke, K., Radulovic, V., Broekhuis, M., 2013. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation.
Nat Cell Biol, 15(4):353-362.
[44] Kotake, Y., Nakagawa, T., Kitagawa, K., 2011. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of
p15INK4B
tumor suppressor gene.
Oncogene, 30(16):1956-1962.
[45] Ku, M., Koche, R.P., Rheinbay, E., 2008. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains.
PLoS Genet, 4(10):e1000242
[46] Lee, S.H., Um, S.J., Kim, E.J., 2013. CBX8 suppresses Sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1.
Cancer Lett, 335(2):397-403.
[47] Lee, S.W., Lee, M.H., Park, J.H., 2012. SUMOylation of hnRNP-K is required for p53-mediated cell-cycle arrest in response to DNA damage.
EMBO J, 31(23):4441-4452.
[48] Lewis, E.B., 1978. A gene complex controlling segmentation in
Drosophila
.
Nature, 276(5688):565-570.
[49] Li, B., Zhou, J., Liu, P., 2007. Polycomb protein Cbx4 promotes SUMO modification of
de novo DNA methyltransferase Dnmt3a.
Biochem J, 405(2):369-378.
[50] Li, G., Warden, C., Zou, Z., 2013. Altered expression of polycomb group genes in glioblastoma multiforme.
PLoS ONE, 8(11):e80970
[51] Liu, B., Liu, Y.F., Du, Y.R., 2013. Cbx4 regulates the proliferation of thymic epithelial cells and thymus function.
Development, 140(4):780-788.
[52] Long, J., Zuo, D., Park, M., 2005. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin.
J Biol Chem, 280(42):35477-35489.
[53] Luis, N.M., Morey, L., Mejetta, S., 2011. Regulation of human epidermal stem cell proliferation and senescence requires polycomb-dependent and -independent functions of Cbx4.
Cell Stem Cell, 9(3):233-246.
[54] MacPherson, M.J., Beatty, L.G., Zhou, W., 2009. The CTCF insulator protein is posttranslationally modified by SUMO.
Mol Cell Biol, 29(3):714-725.
[55] Maertens, G.N., El Messaoudi-Aubert, S., Racek, T., 2009. Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus.
PLoS ONE, 4(7):e6380
[56] Maethner, E., Garcia-Cuellar, M.P., Breitinger, C., 2013. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells.
Cell Rep, 3(5):1553-1566.
[57] Malik, B., Hemenway, C.S., 2013. CBX8, a component of the polycomb PRC1 complex, modulates DOT1L-mediated gene expression through AF9/MLLT3.
FEBS Lett, 587(18):3038-3044.
[58] Margueron, R., Li, G., Sarma, K., 2008. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.
Mol Cell, 32(4):503-518.
[59] Margueron, R., Justin, N., Ohno, K., 2009. Role of the polycomb protein EED in the propagation of repressive histone marks.
Nature, 461(7265):762-767.
[60] Mendenhall, E.M., Koche, R.P., Truong, T., 2010. GC-rich sequence elements recruit PRC2 in mammalian ES cells.
PLoS Genet, 6(12):e1001244
[61] Merrill, J.C., Kagey, M.H., Melhuish, T.A., 2010. Inhibition of CtBP1 activity by Akt-mediated phosphorylation.
J Mol Biol, 398(5):657-671.
[62] Mills, A.A., 2010. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins.
Nat Rev Cancer, 10(10):669-682.
[63] Mohammad, H.P., Cai, Y., McGarvey, K.M., 2009. Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation.
Cancer Res, 69(15):6322-6330.
[64] Morey, L., Helin, K., 2010. Polycomb group protein-mediated repression of transcription.
Trends Biochem Sci, 35(6):323-332.
[65] Morey, L., Pascual, G., Cozzuto, L., 2012. Non-overlapping functions of the polycomb group Cbx family of proteins in embryonic stem cells.
Cell Stem Cell, 10(1):47-62.
[66] Morris, J.R., Boutell, C., Keppler, M., 2009. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress.
Nature, 462(7275):886-890.
[67] Muller, J., Verrijzer, P., 2009. Biochemical mechanisms of gene regulation by polycomb group protein complexes.
Curr Opin Genet Dev, 19(2):150-158.
[68] Muller, J., Gaunt, S., Lawrence, P.A., 1995. Function of the polycomb protein is conserved in mice and flies.
Development, 121(9):2847-2852.
[69] Nacerddine, K., Lehembre, F., Bhaumik, M., 2005. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice.
Dev Cell, 9(6):769-779.
[70] OLoghlen, A., Munoz-Cabello, A.M., Gaspar-Maia, A., 2012. MicroRNA regulation of Cbx7 mediates a switch of polycomb orthologs during ESC differentiation.
Cell Stem Cell, 10(1):33-46.
[71] Oh, Y., Chung, K.C., 2012. Small ubiquitin-like modifier (SUMO) modification of zinc finger protein 131 potentiates its negative effect on estrogen signaling.
J Biol Chem, 287(21):17517-17529.
[72] Oh, Y., Kim, Y.M., Mouradian, M.M., 2011. Human polycomb protein 2 promotes α-synuclein aggregate formation through covalent SUMOylation.
Brain Res, 1381:78-89.
[73] Oktaba, K., Gutierrez, L., Gagneur, J., 2008. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in
Drosophila
.
Dev Cell, 15(6):877-889.
[74] Olsen, J.V., Blagoev, B., Gnad, F., 2006. Global,
in vivo, and site-specific phosphorylation dynamics in signaling networks.
Cell, 127(3):635-648.
[75] Pallante, P., Federico, A., Berlingieri, M.T., 2008. Loss of the
CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer.
Cancer Res, 68(16):6770-6778.
[76] Pallante, P., Terracciano, L., Carafa, V., 2010. The loss of the
CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients.
Eur J Cancer, 46(12):2304-2313.
[77] Pasini, D., Bracken, A.P., Jensen, M.R., 2004. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity.
EMBO J, 23(20):4061-4071.
[78] Pelisch, F., Pozzi, B., Risso, G., 2012. DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation.
J Biol Chem, 287(36):30789-30799.
[79] Pemberton, H., Anderton, E., Patel, H., 2014. Genome-wide co-localization of polycomb orthologs and their effects on gene expression in human fibroblasts.
Genome Biol, 15(2):R23
[80] Plath, K., Fang, J., Mlynarczyk-Evans, S.K., 2003. Role of histone H3 lysine 27 methylation in X inactivation.
Science, 300(5616):131-135.
[81] Ren, X., Kerppola, T.K., 2011. REST interacts with Cbx proteins and regulates polycomb repressive complex 1 occupancy at RE1 elements.
Mol Cell Biol, 31(10):2100-2110.
[82] Ren, X., Vincenz, C., Kerppola, T.K., 2008. Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation.
Mol Cell Biol, 28(9):2884-2895.
[83] Richly, H., Aloia, L., di Croce, L., 2011. Roles of the polycomb group proteins in stem cells and cancer.
Cell Death Dis, 2(9):e204
[84] Rikova, K., Guo, A., Zeng, Q., 2007. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.
Cell, 131(6):1190-1203.
[85] Roscic, A., Moller, A., Calzado, M.A., 2006. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2.
Mol Cell, 24(1):77-89.
[86] Schorderet, P., Duboule, D., 2011. Structural and functional differences in the long non-coding RNA hotair in mouse and human.
PLoS Genet, 7(5):e1002071
[87] Schorderet, P., Lonfat, N., Darbellay, F., 2013. A genetic approach to the recruitment of PRC2 at the
HoxD locus.
PLoS Genet, 9(11):e1003951
[88] Schwartz, Y.B., Pirrotta, V., 2013. A new world of polycombs: unexpected partnerships and emerging functions.
Nat Rev Genet, 14(12):853-864.
[89] Scott, C.L., Gil, J., Hernando, E., 2007. Role of the chromobox protein CBX7 in lymphomagenesis.
PNAS, 104(13):5389-5394.
[90] Senthilkumar, R., Mishra, R.K., 2009. Novel motifs distinguish multiple homologues of polycomb in vertebrates: expansion and diversification of the epigenetic toolkit.
BMC Genom, 10:549
[91] Shinjo, K., Yamashita, Y., Yamamoto, E., 2013. Expression of chromobox homolog 7 (CBX7) is associated with poor prognosis in ovarian clear cell adenocarcinoma via TRAIL-induced apoptotic pathway regulation.
Int J Cancer, in press,:
[92] Simon, J., Chiang, A., Bender, W., 1993. Elements of the
Drosophila bithorax complex that mediate repression by polycomb group products.
Dev Biol, 158(1):131-144.
[93] Simon, J.A., Kingston, R.E., 2013. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put.
Mol Cell, 49(5):808-824.
[94] Song, J., Durrin, L.K., Wilkinson, T.A., 2004. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins.
PNAS, 101(40):14373-14378.
[95] Srinivasan, L., Atchison, M.L., 2004. YY1 DNA binding and PcG recruitment requires CtBP.
Genes Dev, 18(21):2596-2601.
[96] Struhl, G., 1981. A gene product required for correct initiation of segmental determination in
Drosophila
.
Nature, 293(5827):36-41.
[97] Tan, J., Jones, M., Koseki, H., 2011. CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis.
Cancer Cell, 20(5):563-575.
[98] Tavares, L., Dimitrova, E., Oxley, D., 2012. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me
3
.
Cell, 148(4):664-678.
[99] Tsai, M.C., Manor, O., Wan, Y., 2010. Long noncoding RNA as modular scaffold of histone modification complexes.
Science, 329(5992):689-693.
[100] van den Boom, V., Rozenveld-Geugien, M., Bonardi, F., 2013. Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells.
Blood, 121(13):2452-2461.
[101] Vincenz, C., Kerppola, T.K., 2008. Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences.
PNAS, 105(43):16572-16577.
[102] Wang, B., Tang, J., Liao, D., 2013. Chromobox homolog 4 is correlated with prognosis and tumor cell growth in hepatocellular carcinoma.
Ann Surg Oncol, 20(S3):S684-S692.
[103] Wang, H., Wang, L., Erdjument-Bromage, H., 2004. Role of histone H2A ubiquitination in polycomb silencing.
Nature, 431(7010):873-878.
[104] Woo, C.J., Kharchenko, P.V., Daheron, L., 2010. A region of the human HOXD cluster that confers polycomb-group responsiveness.
Cell, 140(1):99-110.
[105] Woo, C.J., Kharchenko, P.V., Daheron, L., 2013. Variable requirements for DNA-binding proteins at polycomb-dependent repressive regions in human HOX clusters.
Mol Cell Biol, 33(16):3274-3285.
[106] Wotton, D., Merrill, J.C., 2007. Pc2 and SUMOylation.
Biochem Soc Trans, 35(Pt 6):1401-1404.
[107] Wu, H.A., Balsbaugh, J.L., Chandler, H., 2013. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog
Cbx7
.
J Biol Chem, 288(51):36398-36408.
[108] Wu, X., Johansen, J.V., Helin, K., 2013. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation.
Mol Cell, 49(6):1134-1146.
[109] Yang, L., Lin, C., Liu, W., 2011. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs.
Cell, 147(4):773-788.
[110] Yap, K.L., Li, S., Munoz-Cabello, A.M., 2010. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of
INK4a
.
Mol Cell, 38(5):662-674.
[111] Zhang, X.W., Zhang, L., Qin, W., 2010. Oncogenic role of the chromobox protein CBX7 in gastric cancer.
J Exp Clin Cancer Res, 29(1):114
[112] Zhao, J., Sun, B.K., Erwin, J.A., 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome.
Science, 322(5902):750-756.
[113] Zhao, J., Ohsumi, T.K., Kung, J.T., 2010. Genome-wide identification of polycomb-associated RNAs by RIP-seq.
Mol Cell, 40(6):939-953.
[114] Zhou, X., Zhang, H.L., Gu, G.F., 2013. Investigation of the relationship between chromobox homolog 8 and nucleus pulposus cells degeneration in rat intervertebral disc.
In Vitro Cell Dev Biol Anim, 49(4):279-286.
Open peer comments: Debate/Discuss/Question/Opinion
<1>