References
[1] Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project, 2009. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs.
Nature, 457(7232):1028-1032.
[2] Amberg, D.C., Goldstein, A.L., Cole, C.N., 1992. Isolation and characterization of RAT1: an essential gene of
Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA.
Genes Dev, 6(7):1173-1189.
[3] Arigo, J.T., Eyler, D.E., Carroll, K.L., 2006. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3.
Mol Cell, 23(6):841-851.
[4] Babitzke, P., Kushner, S.R., 1991. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of
Escherichia coli
.
PNAS, 88(1):1-5.
[5] Bousquet-Antonelli, C., Presutti, C., Tollervey, D., 2000. Identification of a regulated pathway for nuclear pre-mRNA turnover.
Cell, 102(6):765-775.
[6] Brannan, K., Kim, H., Erickson, B., 2012. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription.
Mol Cell, 46(3):311-324.
[7] Brogna, S., Wen, J., 2009. Nonsense-mediated mRNA decay (NMD) mechanisms.
Nat Struct Mol Biol, 16(2):107-113.
[8] Burkard, K.T., Butler, J.S., 2000. A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Npl3p.
Mol Cell Biol, 20(2):604-616.
[9] Canavan, R., Bond, U., 2007. Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in
Saccharomyces cerevisiae
.
Nucl Acids Res, 35(18):6268-6279.
[10] Chekulaeva, M., Filipowicz, W., 2009. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells.
Curr Opin Cell Biol, 21(3):452-460.
[11] Chen, C.Y., Gherzi, R., Ong, S.E., 2001. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs.
Cell, 107(4):451-464.
[12] Core, L.J., Waterfall, J.J., Lis, J.T., 2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters.
Science, 322(5909):1845-1848.
[13] Das, B., Guo, Z., Russo, P., 2000. The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation.
Mol Cell Biol, 20(8):2827-2838.
[14] Das, B., Butler, J.S., Sherman, F., 2003. Degradation of normal mRNA in the nucleus of
Saccharomyces cerevisiae
.
Mol Cell Biol, 23(16):5502-5515.
[15] Davis, C.A., Ares, M., 2006. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in
Saccharomyces cerevisiae
.
PNAS, 103(9):3262-3267.
[16] Davis, R., Shi, Y., 2014. The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation.
J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(5):429-437.
[17] Doma, M.K., Parker, R., 2006. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation.
Nature, 440(7083):561-564.
[18] Dower, K., Kuperwasser, N., Merrikh, H., 2004. A synthetic A tail rescues yeast nuclear accumulation of a ribozyme-terminated transcript.
RNA, 10(12):1888-1899.
[19] Dunn, E.F., Hammell, C.M., Hodge, C.A., 2005. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export.
Genes Dev, 19(1):90-103.
[20] Dziembowski, A., Ventura, A.P., Rutz, B., 2004. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing.
EMBO J, 23(24):4847-4856.
[21] Dziembowski, A., Lorentzen, E., Conti, E., 2007. A single subunit, Dis3, is essentially responsible for yeast exosome core activity.
Nat Struct Mol Biol, 14(1):15-22.
[22] Even, S., Pellegrini, O., Zig, L., 2005. Ribonucleases J1 and J2: two novel endoribonucleases in
B. subtilis with functional homology to
E. coli RNase E.
Nucl Acids Res, 33(7):2141-2152.
[23] Galy, V., Gadal, O., Fromont-Racine, M., 2004. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1.
Cell, 116(1):63-73.
[24] Geerlings, T.H., Vos, J.C., Raue, H.A., 2000. The final step in the formation of 25S rRNA in
Saccharomyces cerevisiae is performed by 5′→3′ exonucleases.
RNA, 6(12):1698-1703.
[25] Gonatopoulos-Pournatzis, T., Cowling, V.H., 2014. Cap-binding complex (CBC).
Biochem J, 458(1):185
[26] Grigull, J., Mnaimneh, S., Pootoolal, J., 2004. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors.
Mol Cell Biol, 24(12):5534-5547.
[27] Gudipati, R.K., Villa, T., Boulay, J., 2008. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice.
Nat Struct Mol Biol, 15(8):786-794.
[28] Gudipati, R.K., Xu, Z.Y., Lebreton, A., 2012. Extensive degradation of RNA precursors by the exosome in wild-type cells.
Mol Cell, 48(3):409-421.
[29] Halbach, F., Reichelt, P., Rode, M., 2013. The yeast Ski complex: crystal structure and RNA channeling to the exosome complex.
Cell, 154(4):814-826.
[30] Henry, Y., Wood, H., Morrissey, J.P., 1994. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site.
EMBO J, 13(10):2452-2463.
[31] Hilleren, P., McCarthy, T., Rosbash, M., 2001. Quality control of mRNA 3′-end processing is linked to the nuclear exosome.
Nature, 413(6855):538-542.
[32] Houseley, J., LaCava, J., Tollervey, D., 2006. RNA-quality control by the exosome.
Nat Rev Mol Cell Biol, 7(7):529-539.
[33] Jackson, D.A., Pombo, A., Iborra, F., 2000. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.
FASEB J, 14(2):242-254.
[34] Jacquier, A., 2009. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs.
Nat Rev Genet, 10(12):833-844.
[35] Jiao, X.F., Xiang, S., Oh, C., 2010. Identification of a quality-control mechanism for mRNA 5′-end capping.
Nature, 467(7315):608-611.
[36] Kapranov, P., Cheng, J., Dike, S., 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription.
Science, 316(5830):1484-1488.
[37] Kim, M., Krogan, N.J., Vasiljeva, L., 2004. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II.
Nature, 432(7016):517-522.
[38] Kim, M., Vasiljeva, L., Rando, O.J., 2006. Distinct pathways for snoRNA and mRNA termination.
Mol Cell, 24(5):723-734.
[39] Kim, Y.K., Furic, L., Desgroseillers, L., 2005. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay.
Cell, 120(2):195-208.
[40] Kuai, L., Das, B., Sherman, F., 2005. A nuclear degradation pathway controls the abundance of normal mRNAs in
Saccharomyces cerevisiae
.
PNAS, 102(39):13962-13967.
[41] Kufel, J., Bousquet-Antonelli, C., Beggs, J.D., 2004. Nuclear pre-mRNA decapping and 5′ degradation in yeast require the Lsm2-8p complex.
Mol Cell Biol, 24(21):9646-9657.
[42] LaCava, J., Houseley, J., Saveanu, C., 2005. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex.
Cell, 121(5):713-724.
[43] Legrain, P., Rosbash, M., 1989. Some
cis- and
trans-acting mutants for splicing target pre-mRNA to the cytoplasm.
Cell, 57(4):573-583.
[44] Lemieux, C., Marguerat, S., Lafontaine, J., 2011. A pre-mRNA degradation pathway that selectively targets intron-containing genes requires the nuclear poly(A)-binding protein.
Mol Cell, 44(1):108-119.
[45] Lewis, A., Felberbaum, R., Hochstrasser, M., 2007. A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance.
J Cell Biol, 178(5):813-827.
[46] Li, C.H., Irmer, H., Gudjonsdottir-Planck, D., 2006. Roles of a
Trypanosoma brucei 5′→3′ exoribonuclease homolog in mRNA degradation.
RNA, 12(12):2171-2186.
[47] Libri, D., Dower, K., Boulay, J., 2002. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation.
Mol Cell Biol, 22(23):8254-8266.
[48] Liu, Q.S., Greimann, J.C., Lima, C.D., 2006. Reconstitution, activities, and structure of the eukaryotic RNA exosome.
Cell, 127(6):1223-1237.
[49] Lubas, M., Christensen, M.S., Kristiansen, M.S., 2011. Interaction profiling identifies the human nuclear exosome targeting complex.
Mol Cell, 43(4):624-637.
[50] Luke, B., Panza, A., Redon, S., 2008. The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in
Saccharomyces cerevisiae
.
Mol Cell, 32(4):465-477.
[51] Malecki, M., Viegas, S.C., Carneiro, T., 2013. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway.
EMBO J, 32(13):1842-1854.
[52] Mathy, N., Benard, L., Pellegrini, O., 2007. 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA.
Cell, 129(4):681-692.
[53] Milligan, L., Torchet, C., Allmang, C., 2005. A nuclear surveillance pathway for mRNAs with defective polyadenylation.
Mol Cell Biol, 25(22):9996-10004.
[54] Minvielle-Sebastia, L., Winsor, B., Bonneaud, N., 1991. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein.
Mol Cell Biol, 11(6):3075-3087.
[55] Mitchell, P., Petfalski, E., Shevchenko, A., 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases.
Cell, 91(4):457-466.
[56] Mitchell, P., Petfalski, E., Houalla, R., 2003. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs.
Mol Cell Biol, 23(19):6982-6992.
[57] Montero Llopis, P., Jackson, A.F., Sliusarenko, O., 2010. Spatial organization of the flow of genetic information in bacteria.
Nature, 466(7302):77-81.
[58] Palancade, B., Zuccolo, M., Loeillet, S., 2005. Pml39, a novel protein of the nuclear periphery required for nuclear retention of improper messenger ribonucleoparticles.
Mol Biol Cell, 16(11):5258-5268.
[59] Peng, S.S., Chen, C.Y., Xu, N., 1998. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein.
EMBO J, 17(12):3461-3470.
[60] Porrua, O., Libri, D., 2013. RNA quality control in the nucleus: the Angels’ share of RNA.
Biochim Biophys Acta, 1829(6-7):604-611.
[61] Preker, P., Nielsen, J., Kammler, S., 2008. RNA exosome depletion reveals transcription upstream of active human promoters.
Science, 322(5909):1851-1854.
[62] Proudfoot, N.J., 2011. Ending the message: poly(A) signals then and now.
Genes Dev, 25(17):1770-1782.
[63] Richard, P., Manley, J.L., 2009. Transcription termination by nuclear RNA polymerases.
Genes Dev, 23(11):1247-1269.
[64] Roth, K.M., Wolf, M.K., Rossi, M., 2005. The nuclear exosome contributes to autogenous control of
NAB2 mRNA levels.
Mol Cell Biol, 25(5):1577-1585.
[65] Rougemaille, M., Dieppois, G., Kisseleva-Romanova, E., 2008. THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association.
Cell, 135(2):308-321.
[66] Rutz, B., Seraphin, B., 2000. A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing.
EMBO J, 19(8):1873-1886.
[67] Schmid, M., Poulsen, M.B., Olszewski, P., 2012. Rrp6p controls mRNA poly(A) tail length and its decoration with poly(A) binding proteins.
Mol Cell, 47(2):267-280.
[68] Schneider, C., Kudla, G., Wlotzka, W., 2012. Transcriptome-wide analysis of exosome targets.
Mol Cell, 48(3):422-433.
[69] Schroeder, S.C., Zorio, D.A., Schwer, B., 2004. A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II.
Mol Cell, 13(3):377-387.
[70] Schwer, B., Mao, X., Shuman, S., 1998. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme.
Nucl Acids Res, 26(9):2050-2057.
[71] Seila, A.C., Calabrese, J.M., Levine, S.S., 2008. Divergent transcription from active promoters.
Science, 322(5909):1849-1851.
[72] Shahbabian, K., Jamalli, A., Zig, L., 2009. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in
Bacillus subtilis
.
EMBO J, 28(22):3523-3533.
[73] Shobuike, T., Sugano, S., Yamashita, T., 1995. Characterization of cDNA encoding mouse homolog of fission yeast
dhp1
+ gene: structural and functional conservation.
Nucl Acids Res, 23(3):357-361.
[74] Shobuike, T., Tatebayashi, K., Tani, T., 2001. The
dhp1
+ gene, encoding a putative nuclear 5′→3′ exoribonuclease, is required for proper chromosome segregation in fission yeast.
Nucl Acids Res, 29(6):1326-1333.
[75] Skružn, M., Schneider, C., Rcz, A., 2009. An endoribonuclease functionally linked to perinuclear mRNP quality control associates with the nuclear pore complexes.
PLoS Biol, 7(1):e8
[76] Stevens, A., Poole, T.L., 1995. 5′-Exonuclease-2 of
Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1.
J Biol Chem, 270(27):16063-16069.
[77] Taraseviciene, L., Miczak, A., Apirion, D., 1991. The gene specifying RNase E (
rne) and a gene affecting mRNA stability (
ams) are the same gene.
Mol Microbiol, 5(4):851-855.
[78] Tomecki, R., Kristiansen, M.S., Lykke-Andersen, S., 2010. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L.
EMBO J, 29(14):2342-2357.
[79] Torchet, C., Bousquet-Antonelli, C., Milligan, L., 2002. Processing of 3′-extended read-through transcripts by the exosome can generate functional mRNAs.
Mol Cell, 9(6):1285-1296.
[80] Vanacova, S., Stefl, R., 2007. The exosome and RNA quality control in the nucleus.
EMBO Rep, 8(7):651-657.
[81] van Hoof, A., Frischmeyer, P.A., Dietz, H.C., 2002. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon.
Science, 295(5563):2262-2264.
[82] Volanakis, A., Passoni, M., Hector, R.D., 2013. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast.
Genes Dev, 27(18):2025-2038.
[83] Wagschal, A., Rousset, E., Basavarajaiah, P., 2012. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII.
Cell, 150(6):1147-1157.
[84] Wang, Y., Liu, C.L., Storey, J.D., 2002. Precision and functional specificity in mRNA decay.
PNAS, 99(9):5860-5865.
[85] West, S., Gromak, N., Proudfoot, N.J., 2004. Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites.
Nature, 432(7016):522-525.
[86] Xiang, S., Cooper-Morgan, A., Jiao, X.F., 2009. Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1.
Nature, 458(7239):784-788.
[87] Xu, Z., Wei, W., Gagneur, J., 2009. Bidirectional promoters generate pervasive transcription in yeast.
Nature, 457(7232):1033-1037.
[88] Xue, Y., Bai, X., Lee, I., 2000.
Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p.
Mol Cell Biol, 20(11):4006-4015.
[89] Yang, E., van Nimwegen, E., Zavolan, M., 2003. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes.
Genome Res, 13(8):1863-1872.
[90] Yoo, E.J., Jin, Y.H., Jang, Y.K., 2000. Fission yeast Hrp1, a chromodomain ATPase, is required for proper chromosome segregation and its overexpression interferes with chromatin condensation.
Nucl Acids Res, 28(9):2004-2011.
[91] Zhai, L.T., Xiang, S., 2014. mRNA quality control at the 5′ end.
J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(5):438-443.
Open peer comments: Debate/Discuss/Question/Opinion
<1>