CLC number: R737.9; Q2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-12-18
Cited: 33
Clicked: 8785
Zhao-ji Liu, Gregg L. Semenza, Hua-feng Zhang. Hypoxia-inducible factor 1 and breast cancer metastasis[J]. Journal of Zhejiang University Science B, 2015, 16(1): 32-43.
@article{title="Hypoxia-inducible factor 1 and breast cancer metastasis",
author="Zhao-ji Liu, Gregg L. Semenza, Hua-feng Zhang",
journal="Journal of Zhejiang University Science B",
volume="16",
number="1",
pages="32-43",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400221"
}
%0 Journal Article
%T Hypoxia-inducible factor 1 and breast cancer metastasis
%A Zhao-ji Liu
%A Gregg L. Semenza
%A Hua-feng Zhang
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 1
%P 32-43
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400221
TY - JOUR
T1 - Hypoxia-inducible factor 1 and breast cancer metastasis
A1 - Zhao-ji Liu
A1 - Gregg L. Semenza
A1 - Hua-feng Zhang
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 1
SP - 32
EP - 43
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400221
Abstract: Accumulating evidence has shown that the hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating breast cancer progression and metastasis. The effects of hypoxia-inducible factor 1 (HIF-1), a master regulator of the hypoxic response, have been extensively studied during these processes. In this review, we focus on the roles of HIF-1 in regulating breast cancer cell metastasis, specifically its effects on multiple key steps of metastasis, such as epithelial-mesenchymal transition (EMT), invasion, extravasation, and metastatic niche formation. We also discuss the roles of HIF-1-regulated non-coding RNAs in breast cancer metastasis, and therapeutic opportunities for breast cancer through targeting the HIF-1 pathway.
[1]Bao, B., Azmi, A.S., Ali, S., et al., 2012. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. BBA Rev. Cancer, 1826(2):272-296.
[2]Bocca, C., Ievolella, M., Autelli, R., et al., 2014. Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. Exp. Opin. Therap. Targets, 18(2):121-135.
[3]Bos, R., van der Groep, P., Greijer, A.E., et al., 2003. Levels of hypoxia-inducible factor-1α independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 97(6):1573-1581.
[4]Brizel, D.M., Scully, S.P., Harrelson, J.M., et al., 1996. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res., 56(5):941-943.
[5]Camps, C., Buffa, F.M., Colella, S., et al., 2008. hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res., 14(5):1340-1348.
[6]Camps, C., Saini, H.K., Mole, D.R., et al., 2014. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol. Cancer, 13:28.
[7]Cancer Genome Atlas Network, 2012. Comprehensive molecular portraits of human breast tumours. Nature, 490(7418):61-70.
[8]Cascio, S., D’Andrea, A., Ferla, R., et al., 2010. miR-20b modulates VEGF expression by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells. J. Cell. Physiol., 224(1):242-249.
[9]Chaffer, C.L., Weinberg, R.A., 2011. A perspective on cancer cell metastasis. Science, 331(6024):1559-1564.
[10]Chaturvedi, P., Gilkes, D.M., Wong, C.C., et al., 2013. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J. Clin. Invest., 123(1):189-205.
[11]Conklin, M.W., Eickhoff, J.C., Riching, K.M., et al., 2011. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol., 178(3):1221-1232.
[12]Creighton, C.J., Chang, J.C., Rosen, J.M., 2010. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J. Mammary Gland Biol. Neopl., 15(2):253-260.
[13]Davis, F.M., Azimi, I., Faville, R.A., et al., 2014. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene, 33(18):2307-2316.
[14]Du, W.W., Fang, L., Li, M., et al., 2013. MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. J. Cell Sci., 126(6):1440-1453.
[15]Duffy, M.J., Maguire, T.M., Hill, A., et al., 2000. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res., 2(4):252-257.
[16]Erler, J.T., Bennewith, K.L., Nicolau, M., et al., 2006. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440(7088):1222-1226.
[17]Erler, J.T., Bennewith, K.L., Cox, T.R., et al., 2009. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1):35-44.
[18]Feldser, D., Agani, F., Iyer, N.V., et al., 1999. Reciprocal positive regulation of hypoxia-inducible factor 1α and insulin-like growth factor 2. Cancer Res., 59(16):3915-3918.
[19]Fidler, I.J., 1970. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2'-deoxyuridine. J. Natl. Cancer Inst., 45(4):773-782.
[20]Fukuda, N., Nakayama, M., Jian, T., et al., 2003. Leukocyte angiotensin II levels in patients with essential hypertension: relation to insulin resistance. Am. J. Hypertens., 16(2):129-134.
[21]Fukuda, R., Hirota, K., Fan, F., et al., 2002. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J. Biol. Chem., 277(41):38205-38211.
[22]Fukuda, R., Zhang, H.F., Kim, J.W., et al., 2007. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129(1):111-122.
[23]Gao, P., Zhang, H.F., Dinavahi, R., et al., 2007. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 12(3):230-238.
[24]Generali, D., Berruti, A., Brizzi, M.P., et al., 2006. Hypoxia-inducible factor-1α-expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin. Cancer Res., 12(15):4562-4568.
[25]Gilkes, D.M., Bajpai, S., Chaturvedi, P., et al., 2013a. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem., 288(15):10819-10829.
[26]Gilkes, D.M., Bajpai, S., Wong, C.C., et al., 2013b. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res., 11(5):456-466.
[27]Gilkes, D.M., Chaturvedi, P., Bajpai, S., et al., 2013c. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res., 73(11):3285-3296.
[28]Grimshaw, M.J., 2007. Endothelins and hypoxia-inducible factor in cancer. Endocr. Rel. Cancer, 14(2):233-244.
[29]Gruber, G., Greiner, R.H., Hlushchuk, R., et al., 2004. Hypoxia-inducible factor 1α in high-risk breast cancer: an independent prognostic parameter? Breast Cancer Res., 6(3):R191-R198.
[30]Haque, I., Banerjee, S., Mehta, S., et al., 2011. Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1α-TWIST signaling networks in human breast cancer cells. J. Biol. Chem., 286(50):43475-43485.
[31]Hill, R.P., Marie-Egyptienne, D.T., Hedley, D.W., 2009. Cancer stem cells, hypoxia and metastasis. Semin. Radiat. Oncol., 19(2):106-111.
[32]Hohenberger, P., Felgner, C., Haensch, W., et al., 1998. Tumor oxygenation correlates with molecular growth determinants in breast cancer. Breast Cancer Res. Treat., 48(2):97-106.
[33]Horrée, N., van Diest, P.J., Daisy, M.D.S.G., et al., 2007. The invasive front in endometrial carcinoma: higher proliferation and associated derailment of cell cycle regulators. Human Pathol., 38(8):1232-1238.
[34]Hou, P., Zhao, Y., Li, Z., et al., 2014. lincRNA-RoR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis., 5(6):e1287.
[35]Hu, M., Polyak, K., 2008. Microenvironmental regulation of cancer development. Curr. Opin. Genet. Dev., 18(1):27-34.
[36]Huang, J., Zhou, N., Watabe, K., et al., 2014. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis., 5(1):e1008.
[37]Huang, R.L., Teo, Z.Q., Chong, H.C., et al., 2011. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood, 118(14):3990-4002.
[38]Hugo, H.J., Pereira, L., Suryadinata, R., et al., 2013. Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res., 15(6):R113.
[39]Hwang-Verslues, W.W., Chang, P.H., Wei, P.C., et al., 2011. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene, 30(21):2463-2474.
[40]Incorvaia, L., Badalamenti, G., Rini, G., et al., 2007. MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. Anticancer Res., 27(3B):1519-1525.
[41]Jemal, A., Bray, F., Center, M.M., et al., 2011. Global cancer statistics. CA Cancer J. Clin., 61(2):69-90.
[42]Jin, F.Y., Brockmeier, U., Otterbach, F., et al., 2012. New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol. Cancer Res., 10(8):1021-1031.
[43]Jo, M., Lester, R.D., Montel, V., et al., 2009. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. J. Biol. Chem., 284(34):22825-22833.
[44]Kalluri, R., Weinberg, R.A., 2009. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 119(6):1420-1428.
[45]Kaplan, H.G., Malmgren, J.A., Atwood, M., 2005. Tumor size, age and stage in patient detected breast cancer. J. Clin. Oncol., 23(16):716.
[46]Kasuno, K., Takabuchi, S., Fukuda, K., et al., 2004. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J. Biol. Chem., 279(4):2550-2558.
[47]Keklikoglou, I., Koerner, C., Schmidt, C., et al., 2012. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene, 31(37):4150-4163.
[48]Kim, J.W., Tchernyshyov, I., Semenza, G.L., et al., 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 3(3):177-185.
[49]Krieg, M., Haas, R., Brauch, H., et al., 2000. Up-regulation of hypoxia-inducible factors HIF-1α and HIF-2α under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene, 19(48):5435-5443.
[50]Krishnamachary, B., Zagzag, D., Nagasawa, H., et al., 2006. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res., 66(5):2725-2731.
[51]Kulshreshtha, R., Ferracin, M., Wojcik, S.E., et al., 2007. A microRNA signature of hypoxia. Mol. Cell. Biol., 27(5):1859-1867.
[52]Lando, D., Peet, D.J., Whelan, D.A., et al., 2002. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science, 295(5556):858-861.
[53]Laughner, E., Taghavi, P., Chiles, K., et al., 2001. Her2 (neu) signaling increases the rate of hypoxia-inducible factor 1 alpha (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol., 21(12):3995-4004.
[54]Lech, R., Przemyslaw, O., 2011. Epidemiological models for breast cancer risk estimation. Ginekol. Pol., 82(6):451-454.
[55]Lee, H.S., Seo, E.Y., Kang, N.E., et al., 2008. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J. Nutr. Biochem., 19(5):313-319.
[56]Li, J.Y., Zhang, Y., Zhang, W.H., et al., 2012. Differential distribution of miR-20a and miR-20b may underly metastatic heterogeneity of breast cancers. Asian Pac. J. Cancer Prev., 13(5):1901-1906.
[57]Li, X., Liu, X., Xu, W., et al., 2013. c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J. Biol. Chem., 288(25):18121-18133.
[58]Ling, H., Fabbri, M., Calin, G.A., 2013. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Disc., 12(11):847-865.
[59]Liu, X.H., Kirschenbaum, A., Lu, M., et al., 2002. Prostaglandin E2 induces hypoxia-inducible factor-1α stabilization and nuclear localization in a human prostate cancer cell line. J. Biol. Chem., 277(51):50081-50086.
[60]Loayza-Puch, F., Yoshida, Y., Matsuzaki, T., et al., 2010. Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene, 29(18):2638-2648.
[61]Lock, F.E., Mcdonald, P.C., Lou, Y., et al., 2013. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene, 32(44):5210-5219.
[62]Lundgren, K., Holm, C., Landberg, G., 2007. Hypoxia and breast cancer: prognostic and therapeutic implications. Cell. Mol. Life Sci., 64(24):3233-3247.
[63]Ma, L., Teruya-Feldstein, J., Weinberg, R.A., 2007. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163):682-688.
[64]Ma, L., Reinhardt, F., Pan, E., et al., 2010. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol., 28(4):341-347.
[65]Maglione, E., Ferreira, L.S., Cattapan, G., 2006. Asymptotic properties of bound states in coupled quantum wave guides. J. Phys. A Math. General, 39(5):1207-1228.
[66]Mahon, P.C., Hirota, K., Semenza, G.L., 2001. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Devel., 15(20):2675-2686.
[67]Matouk, I.J., Degroot, N., Mezan, S., et al., 2007. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE, 2(9):e845.
[68]Matouk, I.J., Mezan, S., Mizrahi, A., et al., 2010. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. BBA Mol. Cell Res., 1803(4):443-451.
[69]Matouk, I.J., Raveh, E., Abu-Lail, R., et al., 2014. Oncofetal H19 RNA promotes tumor metastasis. BBA Mol. Cell Res., 1843(7):1414-1426.
[70]May, C.D., Sphyris, N., Evans, K.W., et al., 2011. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res., 13(1):202.
[71]Mees, G., Dierckx, R., Vangestel, C., et al., 2009. Molecular imaging of hypoxia with radiolabelled agents. Eur. J. Nucl. Med. Mol. Imag., 36(10):1674-1686.
[72]Moreno-Bueno, G., Portillo, F., Cano, A., 2008. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene, 27(55):6958-6969.
[73]Munoz-Najar, U.M., Neurath, K.M., Vumbaca, F., et al., 2006. Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene, 25(16):2379-2392.
[74]Padua, D., Zhang, X.H.F., Wang, Q.Q., et al., 2008. TGF-β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133(1):66-77.
[75]Philip, B., Ito, K., Moreno-Sanchez, R., et al., 2013. HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis, 34(8):1699-1707.
[76]Pritchard, S.C., Nicolson, M.C., Lloret, C., et al., 2001. Expression of matrix metalloproteinases 1, 2, 9 and their tissue inhibitors in stage II non-small cell lung cancer: implications for MMP inhibition therapy. Oncol. Rep., 8(2):421-424.
[77]Provenzano, P.P., Eliceiri, K.W., Campbell, J.M., et al., 2006. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med., 4(1):38.
[78]Quintero, M., Brennan, P.A., Thomas, G.J., et al., 2006. Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1α in cancer: role of free radical formation. Cancer Res., 66(2):770-774.
[79]Ravi, D., Ramadas, K., Mathew, B.S., et al., 2001. Apoptosis, angiogenesis and proliferation: trifunctional measure of tumour response to radiotherapy for oral cancer. Oral Oncol., 37(2):164-171.
[80]Rose, C., Vtoraya, O., Pluzanska, A., et al., 2003. An open randomised trial of second-line endocrine therapy in advanced breast cancer. Comparison of the aromatase inhibitors letrozole and anastrozole. Eur. J. Cancer, 39(16):2318-2327.
[81]Rothé, F., Ignatiadis, M., Chaboteaux, C., et al., 2011. Global microRNA expression profiling identifies miR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS ONE, 6(6):e20980.
[82]Sceneay, J., Chow, M.T., Chen, A., et al., 2012. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res., 72(16):3906-3911.
[83]Schito, L., Rey, S., Tafani, M., et al., 2012. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor b promotes lymphatic metastasis of hypoxic breast cancer cells. PNAS, 109(40):E2707-E2716.
[84]Semenza, G.L., 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 3(10):721-732.
[85]Semenza, G.L., 2011. Oxygen sensing, homeostasis, and disease reply. N. Engl. J. Med., 365(19):537-547.
[86]Semenza, G.L., 2012. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci., 33(4):207-214.
[87]Singh, A., Settleman, J., 2010. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29(34):4741-4751.
[88]Takahashi, K., Yan, I.K., Haga, H., et al., 2013. The hypoxia-induced long non-coding RNA linc-RoR modulates tumor cell resistance to hypoxia by an extra-cellular vesicle mediated regulation of hypoxia-signaling pathways in hepatocellular cancer. Hepatology, 58:1067A.
[89]Talks, K.L., Turley, H., Gatter, K.C., et al., 2000. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol., 157(2):411-421.
[90]Thiery, J.P., 2002. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2(6):442-454.
[91]Valastyan, S., Weinberg, R.A., 2011. Tumor metastasis: molecular insights and evolving paradigms. Cell, 147(2):275-292.
[92]Vaupel, P., Schlenger, K., Knoop, C., et al., 1991. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res., 51(12):3316-3322.
[93]Vaupel, P., Mayer, A., Hockel, M., 2004. Tumor hypoxia and malignant progression. Meth. Enzymol., 381:335-354.
[94]Vaupel, P., Hockel, M., Mayer, A., 2007. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox. Signal., 9(8):1221-1235.
[95]Volinia, S., Galasso, M., Sana, M.E., et al., 2012. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. PNAS, 109(8):3024-3029.
[96]Wang, G.L., Jiang, B.H., Rue, E.A., et al., 1995. Hypoxia-inducible factor-1 is a basic-helix-loop-helix-pas heterodimer regulated by cellular O2 tension. PNAS, 92(12):5510-5514.
[97]Weigelt, B., Peterse, J.L., van’t Veer, L.J., 2005. Breast cancer metastasis: markers and models. Nat. Rev. Cancer, 5(8):591-602.
[98]Wong, C.C.L., Gilkes, D.M., Zhang, H.F., et al., 2011. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. PNAS, 108(39):16369-16374.
[99]Wong, C.C.L., Zhang, H., Gilkes, D.M., et al., 2012. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J. Mol. Med., 90(7):803-815.
[100]Xing, F., Okuda, H., Watabe, M., et al., 2011. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene, 30(39):4075-4086.
[101]Xue, M., Li, X., Li, Z., et al., 2014. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol., 35(7):6901-6912.
[102]Zhang, H., Gao, P., Fukuda, R., et al., 2007. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11(5):407-420.
[103]Zhang, H., Qian, D.Z., Tan, Y.S., et al., 2008. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. PNAS, 105(50):19579-19586.
[104]Zhang, H., Wong, C.C.L., Wei, H., et al., 2012. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene, 31(14):1757-1770.
[105]Zhong, H., de Marzo, A.M., Laughner, E., et al., 1999. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res., 59(22):5830-5835.
[106]Zhong, H., Chiles, K., Feldser, D., et al., 2000. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/ FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res., 60(6):1541-1545.
[107]Zundel, W., Schindler, C., Haas-Kogan, D., et al., 2000. Loss of PTEN facilitates HIF-1-mediated gene expression. Gene Devel., 14(4):391-396.
Open peer comments: Debate/Discuss/Question/Opinion
<1>