CLC number: R285.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-06-16
Cited: 10
Clicked: 6142
Chun Pang, Yu-chen Sheng, Ping Jiang, Hai Wei, Li-li Ji. Chlorogenic acid prevents acetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals[J]. Journal of Zhejiang University Science B, 2015, 16(7): 602-610.
@article{title="Chlorogenic acid prevents acetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals",
author="Chun Pang, Yu-chen Sheng, Ping Jiang, Hai Wei, Li-li Ji",
journal="Journal of Zhejiang University Science B",
volume="16",
number="7",
pages="602-610",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400346"
}
%0 Journal Article
%T Chlorogenic acid prevents acetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals
%A Chun Pang
%A Yu-chen Sheng
%A Ping Jiang
%A Hai Wei
%A Li-li Ji
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 7
%P 602-610
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400346
TY - JOUR
T1 - Chlorogenic acid prevents acetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals
A1 - Chun Pang
A1 - Yu-chen Sheng
A1 - Ping Jiang
A1 - Hai Wei
A1 - Li-li Ji
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 7
SP - 602
EP - 610
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400346
Abstract: chlorogenic acid (CGA), a polyphenolic compound, is abundant in fruits, dietary vegetables, and some medicinal herbs. This study investigated the prevention of CGA against acetaminophen (AP)-induced hepatotoxicity and its engaged mechanisms. CGA reversed the decreased cell viability induced by AP in L-02 cells in vitro. In addition, CGA reduced the AP-induced increased serum levels of alanine/aspartate aminotransferase (ALT/AST) in vivo. The effect of CGA on cytochrome P450 (CYP) enzymatic (CYP2E1, CYP1A2, and CYP3A4) activities showed that CGA caused very little inhibition on CYP2E1 and CYP1A2 enzymatic activities, but not CYP3A4. The measurement of liver malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) levels showed that CGA prevented AP-induced liver oxidative stress injury. Further, CGA increased the AP-induced decreased mRNA expression of peroxiredoxin (Prx) 1, 2, 3, 5, 6, epoxide hydrolase (Ephx) 2, and polymerase (RNA) II (DNA directed) polypeptide K (Polr2k), and nuclear factor erythroid-2-related factor 2 (Nrf2). In summary, CGA ameliorates the AP-induced liver injury probably by slightly inhibiting CYP2E1 and CYP1A2 enzymatic properties. In addition, cellular important antioxidant signals such as Prx1, 2, 3, 5, 6, Ephx2, Polr2k, and Nrf2 also contributed to the protection of CGA against AP-induced oxidative stress injury.
[1]Bae, S.H., Sung, S.H., Lee, H.E., et al., 2012. Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury. Antioxid. Redox Signal., 17(10):1351-1361.
[2]Bajt, M.L., Knight, T.R., Lemasters, J.J., et al., 2004. Acetaminophen-induced oxidant stress and cell injury in cultured mouse hepatocytes: protection by N-acetyl cysteine. Toxicol. Sci., 80(2):343-349.
[3]Bauman, J.W., Liu, J., Liu, Y.P., et al., 1991. Increase in metallothionein produced by chemicals that induce oxidative stress. Toxicol. Appl. Pharmacol., 110(2):347-354.
[4]Bebarta, V.S., Kao, L., Froberg, B., et al., 2010. A multi-center comparison of the safety of oral versus intravenous acetylcysteine for treatment of acetaminophen overdose. Clin. Toxicol. (Phila), 48(5):424-430.
[5]del Rio, D., Stalmach, A., Calani, L., et al., 2010. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients, 2(8):820-833.
[6]dos Santos, M.D., Almeida, M.C., Lopes, N.P., et al., 2006. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull., 29(11):2236-2240.
[7]Eismann, T., Huber, N., Shin, T., et al., 2009. Peroxiredoxin-6 protects against mitochondrial dysfunction and liver injury during ischemia-reperfusion in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 296(2):G266-G274.
[8]Fretland, A.J., Omiecinski, C.J., 2000. Epoxide hydrolases: biochemistry and molecular biology. Chem. Biol. Interact., 129(1-2):41-59.
[9]Gavrilova, V., Kajdzanoska, M., Gjamovski, V., et al., 2011. Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. J. Agric. Food Chem., 59(8):4009-4018.
[10]Heidenblad, M., Lindgren, D., Jonson, T., et al., 2008. Tiling resolution array CGH and high density expression profiling of urothelial carcinomas delineate genomic amplicons and candidate target genes specific for advanced tumors. BMC Med. Genomics, 1:3.
[11]Högestätt, E.D., Jönsson, B.A., Ermund, A., et al., 2005. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J. Biol. Chem., 280(36):31405-31412.
[12]Hunyadi, A., Martins, A., Hsieh, T.J., et al., 2012. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE, 7(11):e50619.
[13]Ji, L.L., Jiang, P., Lu, B., et al., 2013. Chlorogenic acid, a dietary polyphenol, protects acetaminophen-induced liver injury and its mechanism. J. Nutr. Biochem., 24(11):1911-1919.
[14]Kasai, H., Fukada, S., Yamaizumi, Z., et al., 2000. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem. Toxicol., 38(5):467-471.
[15]Kim, J.H., Bogner, P.N., Ramnath, N., et al., 2007. Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer. Clin. Cancer Res., 13(13):3875-3882.
[16]Klaassen, C.D., Reisman, S.A., 2010. Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicol. Appl. Pharmacol., 244(1):57-65.
[17]Kono, Y., Kobayashi, K., Tagawa, S., et al., 1997. Antioxidant activity of polyphenolics in diets: rate constants of reactions of chlorogenic acid and caffeic acid with reactive species of oxygen and nitrogen. Biochim. Biophys. Acta, 1335(3):335-342.
[18]Laine, J.E., Auriola, S., Pasanen, M., et al., 2009. Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica, 39(1):11-21.
[19]Lee, W.M., 2003. Drug-induced hepatotoxicity. N. Engl. J. Med., 349(5):474-485.
[20]Lee, W.M., 2004. Acetaminophen and the U.S. acute liver failure study group: lowering the risks of hepatic failure. Hepatology, 40(1):6-9.
[21]Liang, Q.N., Sheng, Y.C., Jiang, P., et al., 2011. The gender-dependent difference of liver GSH antioxidant system in mice and its influence on isoline-induced liver injury. Toxicology, 280(1-2):61-69.
[22]Liu, J., Liu, Y., Hartley, D., et al., 1999. Metallothionein-I/II knockout mice are sensitive to acetaminophen-induced hepatotoxicity. J. Pharmacol. Exp. Ther., 289(1):580-586.
[23]Liu, J., Zhou, Z.X., Zhang, W., et al., 2009. Changes in hepatic gene expression in response to hepatoprotective levels of zinc. Liver Int., 29(8):1222-1229.
[24]McCord, J.M., Fridovich, I., 1969. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244(22):6049-6055.
[25]Oku, H., Ogawa, Y., Iwaoka, E., et al., 2011. Allergy-preventive effects of chlorogenic acid and iridoid derivatives from flower buds of Lonicera japonica. Biol. Pharm. Bull., 34(8):1330-1333.
[26]Özyürek, M., Bektaşoğlu, B., Güçlü, K., et al., 2008. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Anal. Chim. Acta, 616(2):196-206.
[27]Phillips, I.R., Dolphin, C.T., Clair, P., et al., 1995. The molecular biology of the flavin-containing monooxygenases of man. Chem. Biol. Interact., 96(1):17-32.
[28]Raucy, J.L., Lasker, J.M., Lieber, C.S., et al., 1989. Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch. Biochem. Biophys., 271(1):270-283.
[29]Reszka, E., Wieczorek, E., Jablonska, E., et al., 2015. Association between plasma selenium level and NRF2 target genes expression in humans. J. Trace. Elem. Med. Biol., 30:102-106.
[30]Rhee, S.G., Chae, H.Z., Kim, K., 2005. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radical Biol. Med., 38(12):1543-1552.
[31]Saito, C., Yan, H.M., Artigues, A., et al., 2010. Mechanism of protection by metallothionein against acetaminophen hepatotoxicity. Toxicol. Appl. Pharmacol., 242(2):182-190.
[32]Wang, J.M., Sheng, Y.C., Ji, L.L., et al., 2014. Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(6):540-547.
[33]Zhang, J., Cashman, J.R., 2006. Quantitative analysis of FMO gene mRNA levels in human tissues. Drug Metab. Dispos., 34(1):19-26.
[34]Zhang, J.Q., Shi, L., Xu, X.N., et al., 2014. Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(12):1039-1047.
Open peer comments: Debate/Discuss/Question/Opinion
<1>